Supersymmetric Yang--Mills theory as a~holomorphic vector bundle over twistors and super-self-duality
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 1, pp. 39-43
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The constraint equations of supersymmetric Yang–Mills gauge theory are represented
as holomorphie vector bundles over the space of supertwistors. The twistor description of the super-self-duality equations is discussed; in particular the special
geometrical properties of the $N=4$ theory are noted.
			
            
            
            
          
        
      @article{TMF_1983_55_1_a3,
     author = {I. V. Volovich},
     title = {Supersymmetric {Yang--Mills} theory as a~holomorphic vector bundle over twistors and super-self-duality},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {39--43},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a3/}
}
                      
                      
                    TY - JOUR AU - I. V. Volovich TI - Supersymmetric Yang--Mills theory as a~holomorphic vector bundle over twistors and super-self-duality JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1983 SP - 39 EP - 43 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a3/ LA - ru ID - TMF_1983_55_1_a3 ER -
%0 Journal Article %A I. V. Volovich %T Supersymmetric Yang--Mills theory as a~holomorphic vector bundle over twistors and super-self-duality %J Teoretičeskaâ i matematičeskaâ fizika %D 1983 %P 39-43 %V 55 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a3/ %G ru %F TMF_1983_55_1_a3
I. V. Volovich. Supersymmetric Yang--Mills theory as a~holomorphic vector bundle over twistors and super-self-duality. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 1, pp. 39-43. http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a3/
