Supersymmetric Yang–Mills theory as a holomorphic vector bundle over twistors and super-self-duality
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 1, pp. 39-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The constraint equations of supersymmetric Yang–Mills gauge theory are represented as holomorphie vector bundles over the space of supertwistors. The twistor description of the super-self-duality equations is discussed; in particular the special geometrical properties of the $N=4$ theory are noted.
@article{TMF_1983_55_1_a3,
     author = {I. V. Volovich},
     title = {Supersymmetric {Yang{\textendash}Mills} theory as a~holomorphic vector bundle over twistors and super-self-duality},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {39--43},
     year = {1983},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a3/}
}
TY  - JOUR
AU  - I. V. Volovich
TI  - Supersymmetric Yang–Mills theory as a holomorphic vector bundle over twistors and super-self-duality
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 39
EP  - 43
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a3/
LA  - ru
ID  - TMF_1983_55_1_a3
ER  - 
%0 Journal Article
%A I. V. Volovich
%T Supersymmetric Yang–Mills theory as a holomorphic vector bundle over twistors and super-self-duality
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 39-43
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a3/
%G ru
%F TMF_1983_55_1_a3
I. V. Volovich. Supersymmetric Yang–Mills theory as a holomorphic vector bundle over twistors and super-self-duality. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 1, pp. 39-43. http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a3/

[1] Ferrara S., Zumino B., Nucl. Phys., B79:2 (1974), 413–421 ; Salam A., Strathdee J., Phys. Lett., B51:3 (1974), 353–355 ; Wess J., Lect. Notes in Phys., 77, 1978 | MR | DOI | MR | MR

[2] Volovich I. V., DAN SSSR, 269 (1983) | MR | Zbl

[3] Gates S. J., Stelle K., West P., Nucl. Phys., B169:3, 4 (1980), 347–356 | DOI | MR

[4] Ogievetskii V. I., Sokachev E. S., YaF, 28:5 (1978), 1631–1640 ; 31:1 (1980), 264–272 ; 3, 821–833 ; Siegel W., Gates S. J., Nucl. Phys., B147:1 (1979), 77–94 | MR | MR | MR | DOI

[5] Ferber A., Nucl. Phys., B132:1 (1978), 55–63 | DOI | MR

[6] Penrose R., Rep. Math. Phys., 12:1 (1977), 65–76 | DOI | MR

[7] Witten E., Phys. Lett., 77B:4 (1978), 394–397 | DOI

[8] Malgranzh B., Lektsii po teorii funktsii neskolkikh kompleksnykh peremennykh, Nauka, M., 1969

[9] Khenkin G. M., DAN SSSR, 255:3 (1980), 844–847 | MR

[10] Ward R., Phys. Lett., A61:2 (1977), 81–82 | DOI | Zbl

[11] Atiyah M. F., Geometry of Yang-Mills fields, Pisa, 1979 | MR

[12] Volovich I. V., TMF, 54:1 (1983), 89–98 | MR

[13] Rogers A., J. Math. Phys., 21:6 (1980), 1352–1363 | DOI | MR

[14] Sohnius M. F., Nucl. Phys., B136:3 (1978), 461–474 | DOI | MR

[15] Wells R., Bull. Amer. Math. Soc., 1:2 (1979), 296–336 | DOI | MR | Zbl

[16] Semikhatov A. M., Pisma v ZhETF, 35:10 (1982), 452–455

[17] Vladimirov A. A., Tarasov O. V., Phys. Lett., 93B:3 (1980), 429–431

[18] Stelle K. S., Preprint LPTENS 81/24, 1981

[19] Kallosh R. E., On finiteness in supersymmetry and supergravity, Preprint P. N. Lebedev Physical Institute, No 69, Moscow, 1982