Statistical theory of crystallization in classical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 1, pp. 128-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A closed system of equations is obtained for the single-particle distribution function. This makes it possible to determine the parameters of the crystallization curve on the basis of knowledge of the statistical properties of the liquid phase. The equations can be used to describe crystallization in a hard-sphere system.
@article{TMF_1983_55_1_a11,
     author = {V. N. Ryzhov},
     title = {Statistical theory of crystallization in classical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {128--136},
     year = {1983},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a11/}
}
TY  - JOUR
AU  - V. N. Ryzhov
TI  - Statistical theory of crystallization in classical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 128
EP  - 136
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a11/
LA  - ru
ID  - TMF_1983_55_1_a11
ER  - 
%0 Journal Article
%A V. N. Ryzhov
%T Statistical theory of crystallization in classical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 128-136
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a11/
%G ru
%F TMF_1983_55_1_a11
V. N. Ryzhov. Statistical theory of crystallization in classical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 1, pp. 128-136. http://geodesic.mathdoc.fr/item/TMF_1983_55_1_a11/

[1] Kirkwood J. G., Monroe E., J. Chem. Phys., 9:2 (1941), 514–526 | DOI | MR

[2] Tyablikov S. V., ZhETF, 17:5 (1947), 386–390

[3] Vlasov A. A., Teoriya mnogikh chastits, Gostekhizdat, M., 1950

[4] Ravechè H. J., Stuart C. A., J. Chem. Phys., 63:3 (1975), 1099–1109 ; 65:6 (1976), 2305–2312 ; J. Math. Phys., 17:11 (1976), 1949–1953 | DOI | DOI | DOI | MR

[5] Ravechè H. J., Kayser R. F., Jr., J. Chem. Phys., 68:8 (1978), 3632–3642 | DOI | MR

[6] Yoshida T., Kudo H., Progr. Theor. Phys., 59:2 (1978), 393–404 | DOI

[7] Lovett R., J. Chem. Phys., 66:3 (1977), 1225–1230 | DOI

[8] Weeks J. D., Rice S. A., Kozak J. J., J. Chem. Phys., 52:5 (1970), 2416–2426 | DOI | MR

[9] Ryzhov V. N., Tareeva E. E., TMF, 48:3 (1981), 416–423 | MR

[10] Ryzhov V. N., Tareeva E. E., Physica, 109A (1981), 357–363 | DOI

[11] Lovett R., Buff F. P., J. Chem. Phys., 72:4 (1980), 2425–2430 | DOI | MR

[12] Ryzhov V. N., Tareeva E. E., Phys. Lett., 75A:1, 2 (1979), 88–90 | DOI

[13] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[14] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, T. 1, Mir, M., 1978, 405 pp. | MR

[15] Percus J. K., The equilibrium theory of classical fluids, Benjamin, N.-Y., 1964

[16] Bogolyubov N. N., Kvazisrednee v zadachakh statisticheskoi mekhaniki, Preprint R-1451, OIYaI, Dubna, 1960

[17] Arinshtein E. A., DAN SSSR, 112:4 (1957), 615–618 | MR | Zbl

[18] Stillinger F. H., Jr., Buff F. P., J. Chem. Phys., 37:1 (1962), 1–12 | DOI

[19] Hansen J.-P., Verlet L., Phys. Rev., 184:1 (1969), 151–161 | DOI

[20] Hoover W. G., Ree F. H., J. Chem. Phys., 49:8 (1968), 3609–3617 | DOI

[21] Ramakrishnan T. V., Yussouff M., Phys. Rev., B19:5 (1979), 2775–2794 | DOI