Quasipotential Coulomb scattering of scalar particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 416-425
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the quasipotential modeling of scattering of strongly interacting scalar particles of equal masses $m$ when the quasipotential in the coordinate representation has the Coulomb form $V(r)=-gr^{-1}$ ($g>m$). In this case, the integral quasipotential equation for the partial-wave amplitudes reduces to a Sturm–Liouville problem in the momentum space with two turning points. To calculate the partial-wave amplitudes, the reference equation method is used in a form that is suitable when the original equation contains two (or more) turning points. In conclusion, there is a discussion of the asymptotic properties of the effective coupling constant which arises in the model.
@article{TMF_1983_54_3_a9,
author = {V. Sh. Gogokhiya},
title = {Quasipotential {Coulomb} scattering of scalar particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {416--425},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a9/}
}
V. Sh. Gogokhiya. Quasipotential Coulomb scattering of scalar particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 416-425. http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a9/