Covariant two-particle wave functions for model quasipotentials that admit exact solutions. I. Solutions in momentum space
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 406-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Covariant two-particle equations (the Logunov–Tavkhelidze equation and an equation projected onto positive-frequency states) are solved exactly for some model quasipotentials (including some containing a part corresponding to repulsion at short distances) in the momentum representation. The conditions of normalization and orthogonality of the wave functions are considered.
@article{TMF_1983_54_3_a8,
     author = {V. N. Kapshai and N. B. Skachkov},
     title = {Covariant two-particle wave functions for model quasipotentials that admit exact {solutions.~I.} {Solutions} in momentum space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {406--415},
     year = {1983},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a8/}
}
TY  - JOUR
AU  - V. N. Kapshai
AU  - N. B. Skachkov
TI  - Covariant two-particle wave functions for model quasipotentials that admit exact solutions. I. Solutions in momentum space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 406
EP  - 415
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a8/
LA  - ru
ID  - TMF_1983_54_3_a8
ER  - 
%0 Journal Article
%A V. N. Kapshai
%A N. B. Skachkov
%T Covariant two-particle wave functions for model quasipotentials that admit exact solutions. I. Solutions in momentum space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 406-415
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a8/
%G ru
%F TMF_1983_54_3_a8
V. N. Kapshai; N. B. Skachkov. Covariant two-particle wave functions for model quasipotentials that admit exact solutions. I. Solutions in momentum space. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 406-415. http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a8/

[1] Logunov A. A., Tavkhelidze A. N., Nuovo Cim., 29:2 (1963), 380–400 | DOI | MR

[2] Kadyshevsky V. G., Nucl. Phys., B6:1 (1968), 125–145 | DOI

[3] Matveev V. A., Muradyan R. M., Tavkhelidze A. N., Relativistically covariant equations for two particles in quantum field theory, Preprint E2-3498, JINR, Dubna, 1967; Faustov R. N., Annals of Phys., 78:1 (1973), 176–189 | DOI

[4] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., Nuovo Cim., 55A (1968), 233–257 ; Кадышевский В. Г., Мир-Касимов Р. М., Скачков Н. Б., ЭЧАЯ, 2:3 (1972), 635–690 | DOI

[5] Filippov A. T., Puzynin I. V., Mavlo D. P., J. Comput. Phys., 22:2 (1976), 150–170 | DOI | MR

[6] Gogokhiya V. Sh., Mavlo D. P., Filippov A. T., Issledovanie reshenii kvazipotentsialnogo uravneniya Logunova-Tavkhelidze i ego modifikatsii, Preprint R2-9894, OIYaI, Dubna, 1976

[7] Kotsinyan Ar. M., Kovariantnyi kvazipotentsialnyi formalizm dlya opisaniya reaktsii s uchastiem dvukhchastichnykh svyazannykh sostoyanii, Preprint R2-8682, OIYaI, Dubna, 1975

[8] Kapshay V. N., Skachkov N. B., Exact solution of the covariant two-particle equation with superposition of one-boson exchange quasipotentials, Preprint E2-81-618, JINR, Dubna, 1981

[9] Belyaev V. B., Irgaziev B. F., YaF, 25:2 (1977), 450–459 | MR

[10] Brown C. E., Jackson A. D., The nucleon-nucleon interaction, North-Holland Publ. Comp., Amsterdam–Oxford, 1976 | Zbl

[11] Skachkov N. B., Covariant three-dimensional equation for fermion-antifermion system, Preprint E2-81-294; Preprint E2-81-308; Preprint E2-81-399, JINR, Dubna, 1981

[12] Yaes R. K., Phys. Rev., D3:12 (1971), 3086–3091

[13] Faustov R. N., TMF, 3:2 (1970), 240–254

[14] Freeman M., Mateev M. D., Mir-Kasimov R. M., Nucl. Phys., B12:2 (1969), 197–215 | DOI

[15] Arkhipov A. A., Savrin V. I., Ob odnom metode resheniya kvazipotentsialnogo uravneniya, Preprint IFVE, No 82-21, Serpukhov, 1982 | MR

[16] Logunov A. A., Savrin V. I., Tyurin N. E., Khrustalev O. A., TMF, 6:2 (1971), 157–165