@article{TMF_1983_54_3_a16,
author = {Yu. M. Vorob'ev and S. Yu. Dobrokhotov},
title = {Quasiclassical quantization of the periodic {Toda} chain from the point of view {of~Lie} algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {477--480},
year = {1983},
volume = {54},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a16/}
}
TY - JOUR AU - Yu. M. Vorob'ev AU - S. Yu. Dobrokhotov TI - Quasiclassical quantization of the periodic Toda chain from the point of view of Lie algebras JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1983 SP - 477 EP - 480 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a16/ LA - ru ID - TMF_1983_54_3_a16 ER -
%0 Journal Article %A Yu. M. Vorob'ev %A S. Yu. Dobrokhotov %T Quasiclassical quantization of the periodic Toda chain from the point of view of Lie algebras %J Teoretičeskaâ i matematičeskaâ fizika %D 1983 %P 477-480 %V 54 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a16/ %G ru %F TMF_1983_54_3_a16
Yu. M. Vorob'ev; S. Yu. Dobrokhotov. Quasiclassical quantization of the periodic Toda chain from the point of view of Lie algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a16/
[1] Dobrokhotov S. Yu., Maslov V. P., Itogi nauki i tekhn. Sovrem. probl. matem., 15, VINITI, M., 1980, 3–94
[2] Krichever I. M., UMN, 33:4 (1978), 215–216 | MR | Zbl
[3] Flaschka H., McLaughlin D. W., Progr. Theor. Phys., 55:2 (1976), 438–456 | DOI | MR | Zbl
[4] Dubrovin B. A., Matveev V. B., Novikov S. P., UMN, 31:1 (1976), 55–136 | MR | Zbl
[5] Faddeev L. D., Kvantovye vpolne integriruemye modeli teorii polya, Preprint LOMI R-2-79, LOMI, Leningrad, 1979
[6] Karasev M. V., Maslov V. P., Itogi nauki i tekhn. Sovrem. probl. matem., 13, VINITI, M., 1979 | MR
[7] Karasev M. V., TMF, 31:1 (1977), 41–46 | MR
[8] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR
[9] Kirillov A. A., Elementy teorii predstavleniya, Nauka, M., 1972 | MR
[10] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[11] Karasev M. V., Usloviya kvantovaniya V. P. Maslova v vysshikh kogomologiyakh i analogi ob'ektov teorii Li dlya kanonicheskikh rassloenii simplekticheskikh mnogoobrazii, No 1092-82, Dep., VINITI, 1982
[12] Dubrovin B. A., UMN, 36:2 (1981), 72–78 | MR