Quasiclassical quantization of the periodic Toda chain from the point of view of Lie algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 477-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

V. P. Maslov's method is used to construct the quasiclassical asymptotic behavior of a representation of the quantum periodic Toda chain over a solvable Lie algebra. The note continues investigations by Dobrokhotov and Maslov [1].
@article{TMF_1983_54_3_a16,
     author = {Yu. M. Vorob'ev and S. Yu. Dobrokhotov},
     title = {Quasiclassical quantization of the periodic {Toda} chain from the point of view {of~Lie} algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {477--480},
     year = {1983},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a16/}
}
TY  - JOUR
AU  - Yu. M. Vorob'ev
AU  - S. Yu. Dobrokhotov
TI  - Quasiclassical quantization of the periodic Toda chain from the point of view of Lie algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 477
EP  - 480
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a16/
LA  - ru
ID  - TMF_1983_54_3_a16
ER  - 
%0 Journal Article
%A Yu. M. Vorob'ev
%A S. Yu. Dobrokhotov
%T Quasiclassical quantization of the periodic Toda chain from the point of view of Lie algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 477-480
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a16/
%G ru
%F TMF_1983_54_3_a16
Yu. M. Vorob'ev; S. Yu. Dobrokhotov. Quasiclassical quantization of the periodic Toda chain from the point of view of Lie algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a16/

[1] Dobrokhotov S. Yu., Maslov V. P., Itogi nauki i tekhn. Sovrem. probl. matem., 15, VINITI, M., 1980, 3–94

[2] Krichever I. M., UMN, 33:4 (1978), 215–216 | MR | Zbl

[3] Flaschka H., McLaughlin D. W., Progr. Theor. Phys., 55:2 (1976), 438–456 | DOI | MR | Zbl

[4] Dubrovin B. A., Matveev V. B., Novikov S. P., UMN, 31:1 (1976), 55–136 | MR | Zbl

[5] Faddeev L. D., Kvantovye vpolne integriruemye modeli teorii polya, Preprint LOMI R-2-79, LOMI, Leningrad, 1979

[6] Karasev M. V., Maslov V. P., Itogi nauki i tekhn. Sovrem. probl. matem., 13, VINITI, M., 1979 | MR

[7] Karasev M. V., TMF, 31:1 (1977), 41–46 | MR

[8] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[9] Kirillov A. A., Elementy teorii predstavleniya, Nauka, M., 1972 | MR

[10] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[11] Karasev M. V., Usloviya kvantovaniya V. P. Maslova v vysshikh kogomologiyakh i analogi ob'ektov teorii Li dlya kanonicheskikh rassloenii simplekticheskikh mnogoobrazii, No 1092-82, Dep., VINITI, 1982

[12] Dubrovin B. A., UMN, 36:2 (1981), 72–78 | MR