Conoidal waves in the $\varphi^4$ model with self-interacting currents
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 469-476 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new form of solutions for relativistic wave equations in the form of rotating “conoidal” waves is found and studied. These waves are more general solutions of periodic type. These essentially nonlinear waves, expressed in terms of elliptic functions, include as special cases nonperiodic solutions of soliton type. In a limiting case, the nonlinear waves can go over into linear oscillations, forming a vacuum condensate.
@article{TMF_1983_54_3_a15,
     author = {V. E. Grishin and V. K. Fedyanin},
     title = {Conoidal waves in the~$\varphi^4$ model with self-interacting currents},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {469--476},
     year = {1983},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a15/}
}
TY  - JOUR
AU  - V. E. Grishin
AU  - V. K. Fedyanin
TI  - Conoidal waves in the $\varphi^4$ model with self-interacting currents
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 469
EP  - 476
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a15/
LA  - ru
ID  - TMF_1983_54_3_a15
ER  - 
%0 Journal Article
%A V. E. Grishin
%A V. K. Fedyanin
%T Conoidal waves in the $\varphi^4$ model with self-interacting currents
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 469-476
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a15/
%G ru
%F TMF_1983_54_3_a15
V. E. Grishin; V. K. Fedyanin. Conoidal waves in the $\varphi^4$ model with self-interacting currents. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 469-476. http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a15/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl

[2] Krylov N. M., Bogolyubov N. N., Vvedenie v nelineinuyu mekhaniku, izd-vo AN USSR, Kiev, 1973

[3] Grishin V. E., Fedyanin V. K., Preprint R17-81-659, OIYaI, Dubna, 1981

[4] Abramowitz M. A., Stegan I. A., Handbook of Mathematical Functions, National Bureau of Standards, Washington, 1964 | MR