Thermodynamic properties of a one-dimensional Heisenberg system with long-range interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 434-442 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The thermodynamic properties of one-dimensional systems with long-range exchange interaction between classical spins are considered. The transfer matrix method is used to calculate the state function, whose functional integral is transformed into an equivalent integral with nearest-neighbor interaction. At low temperatures, it is shown that with increasing range $\gamma^{-1}$ of the exchange interaction the contribution of the Bloch domain walls to the free energy decreases exponentially. The correlation lengths are obtained as functions of $\gamma^{-1}$.
@article{TMF_1983_54_3_a11,
     author = {R. S. Gekht},
     title = {Thermodynamic properties of a~one-dimensional {Heisenberg} system with long-range interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {434--442},
     year = {1983},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a11/}
}
TY  - JOUR
AU  - R. S. Gekht
TI  - Thermodynamic properties of a one-dimensional Heisenberg system with long-range interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 434
EP  - 442
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a11/
LA  - ru
ID  - TMF_1983_54_3_a11
ER  - 
%0 Journal Article
%A R. S. Gekht
%T Thermodynamic properties of a one-dimensional Heisenberg system with long-range interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 434-442
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a11/
%G ru
%F TMF_1983_54_3_a11
R. S. Gekht. Thermodynamic properties of a one-dimensional Heisenberg system with long-range interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 434-442. http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a11/

[1] Fisher M. E., Amer. J. Phys., 32:5 (1964), 343–354 | DOI | MR

[2] Mc Gurn A. R., Scalapino D. J., Phys. Rev., B11:7 (1975), 2552–2558

[3] Feigelman M. V., FTT, 18:8 (1976), 2454–2457

[4] Nakamura K., Sasada T., J. Phys. C: Solid St. Phys., 11:2 (1978), 331–343 | DOI

[5] Kac M., Uhlenbeck G. E., Hemmer P. C., J. Math. Phys., 4 (1963), 216–225 | DOI | MR

[6] Kac M., Helfand E., J. Math. Phys., 4 (1973), 1078–1090 | DOI | MR

[7] Baker G. A., Jr., Phys. Rev., 122:5 (1961), 1477–1484 | DOI | MR

[8] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[9] Scalapino D. J., Sears M., Ferrell R. A., Phys. Rev., B6:9 (1972), 3409–3416 | DOI

[10] Gekht R. S., Preprint IFSO-86, IFSO, Krasnoyarsk, 1982

[11] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[12] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Fizmatgiz, 1963

[13] Daison F., Montroll E., Kats M., Fisher M., Ustoichivost i fazovye perekhody, Mir, M., 1973 | MR

[14] Gekht R. S., Ignatchenko V. A., ZhETF, 1979, no. 1, 164–174