Quasiclassical integral representations of the scattering amplitude for rearrangement processes
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 426-433 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quasiclassical representation is obtained for the amplitude of rearrangement reactions in the three-body problem in terms of exact classical trajectories and wave functions of the bound states of the particles. Variables convenient for expressing the wave functions and two-body potentials are employed. The conservation laws and Hamilton function are given in the necessary variables. There is a discussion of the physical meaning of the obtained representation and the method of calculating the increment of the action in the channels in angle-action variables. At high energies, the obtained representation goes over into the eikonal expression obtained earlier from the Lippmann–Schwinger equations. An eikonal expression is found for the amplitude of two-particle rearrangement, and this can be generalized to the case of redistribution of an arbitrary number of particles in a two-body collision.
@article{TMF_1983_54_3_a10,
     author = {A. V. Bogdanov and G. V. Dubrovskiy},
     title = {Quasiclassical integral representations of the scattering amplitude for rearrangement processes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {426--433},
     year = {1983},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a10/}
}
TY  - JOUR
AU  - A. V. Bogdanov
AU  - G. V. Dubrovskiy
TI  - Quasiclassical integral representations of the scattering amplitude for rearrangement processes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 426
EP  - 433
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a10/
LA  - ru
ID  - TMF_1983_54_3_a10
ER  - 
%0 Journal Article
%A A. V. Bogdanov
%A G. V. Dubrovskiy
%T Quasiclassical integral representations of the scattering amplitude for rearrangement processes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 426-433
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a10/
%G ru
%F TMF_1983_54_3_a10
A. V. Bogdanov; G. V. Dubrovskiy. Quasiclassical integral representations of the scattering amplitude for rearrangement processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 426-433. http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a10/

[1] Bogdanov A. V., Dubrovskii G. V., TMF, 13 (1972), 88–101

[2] Dubrovskii G. V., Bogdanov A. V., ZhETF, 64 (1973), 1581–1588

[3] Dubrovskiy G. V., Bogdanov A. V., Fischer-Hjalmars I., Chem. Phys., 7 (1975), 405–413 | DOI

[4] Dubrovskii G. V., Bogdanov A. V., Voprosy teorii atomnykh stolknovenii, no. 1, Izd-vo LGU, L., 1975, 66–77

[5] Bogdanov A. V., Dubrovskii G. V., Fisher-Yalmarsh I., ZhETF, 77 (1979), 872–883

[6] Nyuton R., Teoriya rasseyaniya voln i chastits, Mir, 1969 | MR

[7] Bogdanov A. V., Dubrovskii G. V., TMF, 30 (1977), 228–238

[8] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[9] Miller W., J. Chem. Phys., 61 (1974), 1828–1836

[10] Dubrovsky G. V., Bagdanov A. V., Chem. Phys. Lett., 62 (1979), 89–94 | DOI

[11] Dubrovskii G. V., ZhETF, 31 (1977), 313–326