Recursive models in percolation theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 2, pp. 268-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lattice models of the conductivity of random media with uncorrelated bonds are considered. Geometrical and physical conductivity functions are introduced. It is shown by means of the Moore–Shannon inequality for recursive models that the critical points of these functions coincide. Simple estimates are made for the physical conductivity function. The obtained results are compared with known data on the conductivity of homogeneous lattices.
@article{TMF_1983_54_2_a10,
     author = {V. P. Bovin and V. V. Vas'kin and I. Ya. Shneiberg},
     title = {Recursive models in percolation theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {268--276},
     year = {1983},
     volume = {54},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_2_a10/}
}
TY  - JOUR
AU  - V. P. Bovin
AU  - V. V. Vas'kin
AU  - I. Ya. Shneiberg
TI  - Recursive models in percolation theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 268
EP  - 276
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_2_a10/
LA  - ru
ID  - TMF_1983_54_2_a10
ER  - 
%0 Journal Article
%A V. P. Bovin
%A V. V. Vas'kin
%A I. Ya. Shneiberg
%T Recursive models in percolation theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 268-276
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_2_a10/
%G ru
%F TMF_1983_54_2_a10
V. P. Bovin; V. V. Vas'kin; I. Ya. Shneiberg. Recursive models in percolation theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 2, pp. 268-276. http://geodesic.mathdoc.fr/item/TMF_1983_54_2_a10/

[1] Broadbent S. R., Hammersley J. M., Proc. Cambridge Philos. Soc., 53 (1957), 629–641 ; 642–645 | DOI | MR | Zbl

[2] Mur E., Shennon K., “Nadezhnye skhemy na nadezhnykh rele”, Kiberneticheskii sbornik, no. 1, IL, M., 1960, 109–148

[3] Gindikin S. G., “O polinomakh Bernshteina, svyazannykh s funktsiyami algebry logiki”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Trudy II Vsesoyuznoi konferentsii po konstruktivnoi teorii funktsii, Baku, 1965, 590–595 | MR

[4] Watson B. P., Stinchombe R. B., J. Phys. C. Solid State Phys., 9 (1976), 3221 | DOI

[5] Sarychev A. K., ZhETF, 72:3 (1977), 1001–1004

[6] Kazakov V. A., Satanin A. M., ZhETF, 76:1 (1979), 212–214 | MR

[7] Smythe R. T., Wiermann J. C., First-passage percolation on the square lattice, Lecture notes in Math., 67, 1978 | DOI | MR

[8] Kesten H., Commun. Math. Phys., 74 (1980), 41–59 | DOI | MR | Zbl

[9] Kirkpatrik S., “Perkolyatsiya i provodimost”, Sb. NFTT, no. 7, Mir, M., 1977, 249–292

[10] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979

[11] Zhuravlev V. A., Fedorova N. V., Izv. AN SSSR, metally, 1982, no. 2 | MR

[12] Stinchombe R. B., J. Phys. C. Solid State Phys., 7 (1974), 179 | DOI