Covariant three-dimensional equation for the wave function of the $\pi$-meson in the composite model of spinor quarks
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 2, pp. 173-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A covariant one-time equation describing a state with zero spin in a system of two spinor quarks is obtained. The asymptotic behavior of the wave function is investigated for quasipotential taken in the form of the one-gluon exchange amplitude.
@article{TMF_1983_54_2_a1,
     author = {V. I. Savrin and N. B. Skachkov and G. Yu. Tyumenkov},
     title = {Covariant three-dimensional equation for the wave function of the $\pi$-meson in the composite model of spinor quarks},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {173--182},
     year = {1983},
     volume = {54},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_2_a1/}
}
TY  - JOUR
AU  - V. I. Savrin
AU  - N. B. Skachkov
AU  - G. Yu. Tyumenkov
TI  - Covariant three-dimensional equation for the wave function of the $\pi$-meson in the composite model of spinor quarks
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 173
EP  - 182
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_2_a1/
LA  - ru
ID  - TMF_1983_54_2_a1
ER  - 
%0 Journal Article
%A V. I. Savrin
%A N. B. Skachkov
%A G. Yu. Tyumenkov
%T Covariant three-dimensional equation for the wave function of the $\pi$-meson in the composite model of spinor quarks
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 173-182
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_2_a1/
%G ru
%F TMF_1983_54_2_a1
V. I. Savrin; N. B. Skachkov; G. Yu. Tyumenkov. Covariant three-dimensional equation for the wave function of the $\pi$-meson in the composite model of spinor quarks. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 2, pp. 173-182. http://geodesic.mathdoc.fr/item/TMF_1983_54_2_a1/

[1] Salpeter E. E., Bethe H. A., Phys. Rev., 84:6 (1951), 1232–1248 | DOI | MR

[2] Logunov A. A., Tavkhelidze A. N., Nuovo Cim., 29:2 (1963), 380–400 | DOI | MR

[3] Logunov A. A., Savrin V. I., Tyurin I. E., Khrustalev O. A., TMF, 6:2 (1971), 157–165

[4] Kadyshevskii V. G., ZhETF, 46:2 (1968), 654–662 | MR

[5] Kadyshevsky V. G., Nucl. Phys., B6:12 (1968), 125–148 | DOI

[6] Matveev V. A., Muradyan R. M., Tavkhelidze A. N., Relativistically covariant equations for two particles in quantum field theory, Preprint JINR E2-3498, JINR, Dubna, 1967

[7] Faustov R. N., Annals of Physics, 78:1 (1973), 176–189 | DOI

[8] Kadyshevsky V. G., Mateev M. D., Nuovo Cim., 55A:2 (1968), 275–300 | DOI

[9] Skachkov N. B., Covariant three-dimensional equation for fermion-antifermion system. Part I, Preprint E2-81-294, JINR, Dubna, 1981

[10] Savrin V. I., Skachkov N. B., Relativistic potential with QCD large $Q^2$-behaviour and the elastic form factors of mesons, Preprint TH 2822-CERN, CERN, Geneva, 1980

[11] Linkevich A. D., Savrin V. I., Skachkov N. B., The structure functions of relativistic systems composed of two particles with 1/2 spins, Preprint E2-81-611, JINR, Dubna, 1981 | MR

[12] Shirokov Yu. M., ZhETF, 35:4 (1958), 1005–1013

[13] Kvinikhidze A. N., Stoyanov D. Ts., Retarded part of the two-time Green function and two-body relativistic problem, Preprint E2-5746, JINR, Dubna, 1971

[14] Shirokov Yu. Zh., ZhETF, 21:6 (1951), 748–760; Чешков А. А., Широков Ю. М., ЖЭТФ, 44:6 (1963), 1982–1992 | MR

[15] Kadyshevsky V. G., Mir-Kasimov B. M., Skachkov N. B., Nuovo Cim., 55A:2 (1968), 233–257 ; Кадышевский В. Г., Мир-Касимов Р. М., Скачков Н. Б., ЭЧАЯ, 2:3 (1972), 635–678 | DOI

[16] Shapiro I. S., DAN SSSR, 106:4 (1956), 647–649 | MR | Zbl