Complex geometry and integral representations in the future tube in~$\mathbb C^3$
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 99-110
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the boundary of the future tube in $\mathbb C^3$ cannot be holomorphically reeitified along complex light rays lying on the boundary. From the general Cauchy–Fantappie representation the Cauchy–Bochner, Jost–Lehmann–Dyson, Leray, and other integral representations for holomorphic functions and solutions of the $\bar{\partial}$-equation in the future tube are derived.
			
            
            
            
          
        
      @article{TMF_1983_54_1_a8,
     author = {A. G. Sergeev},
     title = {Complex geometry and integral representations in the future tube in~$\mathbb C^3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a8/}
}
                      
                      
                    TY - JOUR AU - A. G. Sergeev TI - Complex geometry and integral representations in the future tube in~$\mathbb C^3$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1983 SP - 99 EP - 110 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a8/ LA - ru ID - TMF_1983_54_1_a8 ER -
A. G. Sergeev. Complex geometry and integral representations in the future tube in~$\mathbb C^3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 99-110. http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a8/
