Complex geometry and integral representations in the future tube in~$\mathbb C^3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 99-110

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the boundary of the future tube in $\mathbb C^3$ cannot be holomorphically reeitified along complex light rays lying on the boundary. From the general Cauchy–Fantappie representation the Cauchy–Bochner, Jost–Lehmann–Dyson, Leray, and other integral representations for holomorphic functions and solutions of the $\bar{\partial}$-equation in the future tube are derived.
@article{TMF_1983_54_1_a8,
     author = {A. G. Sergeev},
     title = {Complex geometry and integral representations in the future tube in~$\mathbb C^3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a8/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Complex geometry and integral representations in the future tube in~$\mathbb C^3$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 99
EP  - 110
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a8/
LA  - ru
ID  - TMF_1983_54_1_a8
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Complex geometry and integral representations in the future tube in~$\mathbb C^3$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 99-110
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a8/
%G ru
%F TMF_1983_54_1_a8
A. G. Sergeev. Complex geometry and integral representations in the future tube in~$\mathbb C^3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 99-110. http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a8/