On field algebras in quantum theory with indefinite metric
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 57-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper consists of two parts. The first discusses the problem of formulating the algebraic approach directly in a space with indefinite metric. One of the possible ways of constructing a net of local field algebras $\mathscr F(O)$ in the $J$ space (Krein space) is considered; it is based on the Bisognano–Wichmann formalism. The second part establishes a number of properties of "$WJ^*$ algebras" (weakly closed algebras with $J$ involution and unit in the $J$ space); the algebras $\mathscr F(O)$ belong to this class. The methods of the proof use generalizations of the fundamental concepts of Tomita–Takesaki theory for algebras with $J$ involution.
@article{TMF_1983_54_1_a5,
     author = {K. Yu. Dadashyan and S. S. Horuzhy},
     title = {On field algebras in quantum theory with indefinite metric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {57--77},
     year = {1983},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a5/}
}
TY  - JOUR
AU  - K. Yu. Dadashyan
AU  - S. S. Horuzhy
TI  - On field algebras in quantum theory with indefinite metric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 57
EP  - 77
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a5/
LA  - ru
ID  - TMF_1983_54_1_a5
ER  - 
%0 Journal Article
%A K. Yu. Dadashyan
%A S. S. Horuzhy
%T On field algebras in quantum theory with indefinite metric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 57-77
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a5/
%G ru
%F TMF_1983_54_1_a5
K. Yu. Dadashyan; S. S. Horuzhy. On field algebras in quantum theory with indefinite metric. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 57-77. http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a5/

[1] Strocchi F., Wightman A. S., J. Phys., 15 (1974), 2198–2225 | MR

[2] Strocchi F., Phys. Rev., 17D (1978), 2010–2022 | MR

[3] Yngvason J., Rep. Math. Phys., 12 (1977), 57–65 | DOI | MR

[4] Mintchev M. J., Phys. ser. A, 13 (1980), 1841–1859 | DOI | MR | Zbl

[5] Morchio G., Strocchi F., Ann. Inst. H. Poincare, 33A (1980), 251–282 | MR

[6] d'Emilio E., Mintchev M. J., Math. Phys., 22 (1981), 1267–1271 | DOI | MR

[7] Jakóbczyk L., Bull. Ac. Sci. Pol., ser. phys., 38 (1980), 167–171 | MR

[8] Ginzburg Yu. P., Iokhvidov I. S., UMN, 17:4 (1962), 3–56 | MR

[9] Bisognano J. J., Wichmann E. H., J. Math. Phys., 16 (1975), 985–1007 | DOI | MR | Zbl

[10] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962 | MR

[11] Demuth M., On time dependent scattering theory in Krein space, Preprint P/20/80, Zentralinstitut der Mathematik u. Mechanik, Berlin, 1980 | MR

[12] Gelfand I. M., Shilov G. E., Obobschennye funktsii, t. 2, Fizmatgiz, M., 1958 | MR

[13] Shulman V. S., Matem. sb., 89:2 (1972), 264–279

[14] Liberzon V. I., Shulman V. S., Izv. AN SSSR, ser. matem., 37 (1973), 533–538 | MR | Zbl

[15] Dixmier J., Les algèbres d'opérateors dans l'éspace Hilbertien (les algèbres de von Neumann), Gauthier-Villars, Paris, 1969 | MR

[16] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[17] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR

[18] Loginov A. I., Shulman V. S., DAN SSSR, 240 (1978), 21–24 | MR

[19] Takesaki M., Tomita's theory of modular Hilbert algebras and its applications, Springer-Verlag, 1970 | MR

[20] Langer H. J., Funct. Anal., 8 (1971), 287–320 | DOI | MR | Zbl

[21] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, 1971 | MR | Zbl

[22] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 1, Mir, M., 1977 | MR