Use of the method of ordered operators in the theory of laser systems. Derivation of asymptotically exact equations for radiation. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 130-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of Dicke type models, a theory of laser radiation of two-level systems is constructed. The theory uses the method of ordered operators, which makes it possible to eliminate the atomic variables and obtain an asymptotically exact (in the sense of the thermodynamic limit) hierarchy of equations for the mean values, which depend only on the variables of the radiation. We also consider the derivation of kinetic equations describing the radiation.
@article{TMF_1983_54_1_a11,
     author = {G. O. Balabanyan},
     title = {Use of the method of ordered operators in the theory of laser systems. {Derivation} of asymptotically exact equations for {radiation.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {130--146},
     year = {1983},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a11/}
}
TY  - JOUR
AU  - G. O. Balabanyan
TI  - Use of the method of ordered operators in the theory of laser systems. Derivation of asymptotically exact equations for radiation. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 130
EP  - 146
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a11/
LA  - ru
ID  - TMF_1983_54_1_a11
ER  - 
%0 Journal Article
%A G. O. Balabanyan
%T Use of the method of ordered operators in the theory of laser systems. Derivation of asymptotically exact equations for radiation. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 130-146
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a11/
%G ru
%F TMF_1983_54_1_a11
G. O. Balabanyan. Use of the method of ordered operators in the theory of laser systems. Derivation of asymptotically exact equations for radiation. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 130-146. http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a11/

[1] Feynman R. P., Phys. Rev., 84 (1951), 108–128 | DOI | MR | Zbl

[2] Maslov V. P., TMF, 33:2 (1977), 185–209 | MR | Zbl

[3] Maslov V. P., Operatornye metody, Nauka, M., 1973, 543 pp. | MR

[4] Bogolyubov N. N. (ml.), TMF, 40:1 (1979), 77–94 | MR

[5] Balabanyan G. O., TMF, 48:1 (1981), 89–105 | MR

[6] Areki F., Skalli M., Khaken G., Vaidlikh V., Kvantovye fluktuatsii izlucheniya lazera, Mir, M., 1974, 236 pp.

[7] Kazantsev A. P., Surdutovich G. I., ZhETF, 56 (1969), 2001–2018

[8] Pokrovskii L. A., TMF, 37:1 (1978), 102–117 | MR

[9] Berten F., Osnovy kvantovoi elektroniki, Mir, M., 1971, 629 pp. | MR

[10] Lyuisell U., Izluchenie i shumy v kvantovoi elektronike, Nauka, M., 1972, 400 pp.

[11] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971, 416 pp.

[12] Zubarev D. N., “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, VINITI AN SSSR, M., 1980, 131–226

[13] Wilcox R. M., J. Math. Phys., 8:4 (1967), 962–982 | DOI | MR | Zbl

[14] Bogolubou N. N., Kinetic equations for the electron-phonon system, Preprint E17-11822, JINR, Dubna, 1978 | MR

[15] Goldberger M., Vatson K., Teoriya stolknovenii, Mir, M., 1967, 823 pp.

[16] Kirillov A. A., Elementy teorii predstavleniya, Nauka, M., 1978, 343 pp. | MR | Zbl

[17] Perelomov A. M., UFN, 123 (1977), 23–55 | DOI