A statistical physics model
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 8-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Gaussian model on a half-axis with interaction given by a Toeptitz form is considered. The free energy and correlation functions are calculated. A new method of inverting Toeplitz matrices and solving the generalized Wiener-Hopf problem is used. The asymptotic behavior of the correlation functions is studied and the conditions for the presence or absence of long-range order are established. The free energyand correlation functions are calculated for a Gaussian model with external field. An expression is obtained for the free energy of a multidimensional Gaussian model.
@article{TMF_1983_54_1_a1,
     author = {V. S. Vladimirov and I. V. Volovich},
     title = {A~statistical physics model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {8--22},
     year = {1983},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a1/}
}
TY  - JOUR
AU  - V. S. Vladimirov
AU  - I. V. Volovich
TI  - A statistical physics model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 8
EP  - 22
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a1/
LA  - ru
ID  - TMF_1983_54_1_a1
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%A I. V. Volovich
%T A statistical physics model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 8-22
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a1/
%G ru
%F TMF_1983_54_1_a1
V. S. Vladimirov; I. V. Volovich. A statistical physics model. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 1, pp. 8-22. http://geodesic.mathdoc.fr/item/TMF_1983_54_1_a1/

[1] Sato M., Miwa T., Jimbo M., “Holonomic quantum fields, V”, Publ. RIMS, Kyoto Univ., 16:2 (1980), 531–584 | DOI | MR | Zbl

[2] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970 | MR

[3] Dobrushin R. L., “Gaussian random fields-Gibbsian point of view”, Multicomponent random systems, Marcel Dekker, New York, Basel, 1980, 119–151 | MR

[4] Carleson L., “Some analytic problems related to statistical mechanics”, Lect. Notes in Mathem., 779 (1980), 5–45 | DOI | MR | Zbl

[5] Mc Coy B. M., Wu T. T., “Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model, IV”, Phys. Rev., 162:2 (1967), 436–475 | DOI

[6] Fisher M., “Teoriya singulyarnostei v kriticheskoi tochke”, Ustoichivost i fazovye perekhody, Mir, M., 1973, 245–369 | MR

[7] Bray A. J., Moore M. A., “Critical behaviour of semi-infinite systems”, J. Phys. A, 10:11 (1977), 1927–1962 | DOI | MR

[8] Grenander U., Segë G., Teplitsevy formy i ikh prilozheniya, IIL, M., 1961 | MR

[9] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971

[10] Dyson F. J., “Existence of a phase transition in a one-dimensional Ising ferromagnet”, Commun. Math. Phys., 12:2 (1969), 91–107 | DOI | MR | Zbl

[11] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[12] Ibragimov I. A., “Ob odnoi teoreme G. Segë”, Matem. zametki, 3:6 (1968), 693–702 | MR | Zbl

[13] Konstruktivnaya kvantovaya teoriya polya, Mir, M., 1977 | MR

[14] Baxter G., Hirschman I. I., Jr., “An explicit inversion formula for finite-section Wiener-Hopf operators”, Bull. Amer. Math. Soc., 70 (1964), 820–824 | DOI | MR

[15] Gokhberg I. Ts., Sementsul A. A., “Ob obraschenii konechnykh teplitsevykh matrits i ikh kontinualnykh analogov”, Matem. issled., VII, no. 2, Kishinev, 1972, 201–223

[16] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, UMN, 13:5 (1958), 3–120 | MR | Zbl

[17] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[18] Rudin U., Teoriya funktsii v polikruge, Mir, M., 1974 | MR | Zbl

[19] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975 | MR

[20] Baxter G., “A norm inequality for a “finite-section” Wiener-Hopf equations”, Illinois J. Math., 7 (1963), 97–103 | MR | Zbl

[21] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IIL, M., 1948

[22] Wu T. T., “Theory of Toeplitz determinants and of the spin correlations of the two-dimensional Ising model”, Phys. Rev., 149:1 (1966), 380 | DOI

[23] Kac M., Summer Institute on Spectral theory and statistical mechanics, Brookhaven Natl. Lah. Rept. BNL 993 (T-422), ed. J. D. Pincus, 1966 | MR

[24] Fisher M. E., Hartwig R. E., “Toeplitz determinants: Some applications, theorems and conjectures”, Adv. Chem. Phys., 15 (1969), 333 | DOI | MR

[25] Hartwig R. E., Fisher M. E., “Asymptotic behavior of Toeplitz matrices and determinants”, Arch. Rat. Mech. Anal., 32:2 (1969), 190 | MR | Zbl

[26] Blekher P. M., “Obraschenie teplitsevykh matrits”, Tr. MMO, 40 (1979), 207–240 | MR | Zbl

[27] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR

[28] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., “Teoremy tauberova tipa dlya obobschennykh funktsii”, Tr. MIAN SSSR, 163, 1984, 42–48 | MR | Zbl

[29] Linnik I. Yu., Izv. AN SSSR, ser. matem., 39:6 (1975), 1393–1403 | MR | Zbl