Cluster expansion for ion-dipole systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 3, pp. 429-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The result of Brydges and Federbush [1] is generalized to the case of ion-dipole systems of classical statistical mechanics. We establish more accurate values for the parameters for which there is convergence of the cluster expansions, and we also establish the existence and exponential clustering of the correlation functions for infinite volume. It is established that if the ion concentration is not equal to zero, not only the ion-ion but also the dipole-dipole interactions are screened.
@article{TMF_1982_53_3_a9,
     author = {A. L. Rebenko},
     title = {Cluster expansion for ion-dipole systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {429--443},
     year = {1982},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a9/}
}
TY  - JOUR
AU  - A. L. Rebenko
TI  - Cluster expansion for ion-dipole systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 429
EP  - 443
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a9/
LA  - ru
ID  - TMF_1982_53_3_a9
ER  - 
%0 Journal Article
%A A. L. Rebenko
%T Cluster expansion for ion-dipole systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 429-443
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a9/
%G ru
%F TMF_1982_53_3_a9
A. L. Rebenko. Cluster expansion for ion-dipole systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 3, pp. 429-443. http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a9/

[1] Brydges D., Federbush P., Commun. Math. Phys., 73:3 (1980), 197–246 | DOI | MR

[2] Glimm D., Dzhaffe A., Spenser T., “Korpuskulyarnaya struktura modeli so slabym vzaimodeistviem i drugie primeneniya vysokotemperaturnykh razlozhenii. I, II”, Konstruktivnaya teoriya polya, Mir, M., 1977 | MR

[3] Glimm D., Dzhaffe A., Spenser T., “Razlozhenie v ryad, svyazannoe s priblizheniem srednego polya. I, II”, Evklidova kvantovaya teoriya polya, Mir, M., 1978 | MR

[4] Brydges D., Federbush P., Commun. Math. Phys., 49:2 (1976), 233–246 | DOI | MR

[5] Brydges D., Federbush P., Commun. Math. Phys., 53:1 (1977), 19–30 | DOI | MR

[6] Brydges D., Commun. Math. Phys., 58:3 (1978), 313–350 | DOI | MR

[7] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1970

[8] Park Y. M., Commun. Math. Phys., 70:1 (1979), 161–167 | DOI | MR

[9] Petrina D. Ya., Ivanov S. S., Rebenko A. L., Uravneniya dlya koeffitsientnykh funktsii matritsy rasseyaniya, Nauka, M., 1979 | MR

[10] Yukhnovskii I. R., Golovko M. F., Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem, Naukova dumka, Kiev, 1980 | MR

[11] Brydges D., Federbush P., J. Math. Phys., 19:10 (1978), 2064–2067 | DOI | MR

[12] Minlos R. A., Tr. mosk. matem. ob-va, 8 (1959), 411–497 | MR

[13] Frolich J., Commun. Math. Phys., 47:2 (1976), 233–268 | DOI | MR

[14] Frolich J., Spenser T., J. Stat. Phys., 24:4 (1981), 617–701 | DOI | MR

[15] Dyson F. J., Lenard A., J. Math. Phys., 8:3 (1967), 423–434 ; 9:5 (1968), 698–711 | DOI | MR | Zbl | DOI | MR

[16] Frelikh G., Teoriya dielektrikov, IL, M., 1960