Darboux transformations for non-Abelian and nonlocal equations of the Toda chain type
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 2, pp. 227-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Darboux transformations are used to construct explicit solutions for the two-dimensionalized Toda chain, sine-Gordon equations and their non-Abelian analogs, the nonlinear Schrödinger equation, the nonlocal Toda equation, and non-Abelian equations of Langmuir oscillations.
@article{TMF_1982_53_2_a4,
     author = {M. A. Sall'},
     title = {Darboux transformations for {non-Abelian} and nonlocal equations of the {Toda} chain type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {227--237},
     year = {1982},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a4/}
}
TY  - JOUR
AU  - M. A. Sall'
TI  - Darboux transformations for non-Abelian and nonlocal equations of the Toda chain type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 227
EP  - 237
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a4/
LA  - ru
ID  - TMF_1982_53_2_a4
ER  - 
%0 Journal Article
%A M. A. Sall'
%T Darboux transformations for non-Abelian and nonlocal equations of the Toda chain type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 227-237
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a4/
%G ru
%F TMF_1982_53_2_a4
M. A. Sall'. Darboux transformations for non-Abelian and nonlocal equations of the Toda chain type. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 2, pp. 227-237. http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a4/

[1] Darboux J., Compt. Rend., 94 (1882), 1456–1469

[2] Wahlquist H., Lect. Notes in Math., 515 (1972), 162–173 | DOI | MR

[3] Matveev V. B., Lett. Math. Phys., 3 (1979), 217–221 | DOI | MR

[4] Matveev V. B., Lett. Math. Phys., 3 (1979), 503–512 | DOI | MR | Zbl

[5] Matveev V. B., Lett. Math. Phys., 3 (1979), 213–216 | DOI | MR | Zbl

[6] Matveev V. B., Proc. of. Int. Conf. RCP, Hermann, Paris, 1979, 264

[7] Matveev V. B., Salle M. A., Lett. Math. Phys., 3 (1979), 425–429 | DOI | MR | Zbl

[8] Matveev V. B., Sall M. A., Zap. nauchn. seminarov LOMI, 101 (1981), 111–118 | MR

[9] Matveev V. B., Sall M. A., DAN SSSR, 261:3 (1981), 533–537 | MR | Zbl

[10] Mikhailov A. V., Pisma v ZhETF, 30 (1979), 443–448

[11] Dubrovin B. A., UMN, 36:2 (1981), 11–80 | MR | Zbl

[12] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[13] Hirota R., J. Phys. Soc. Japan, 35:2 (1973), 289–292 | DOI

[14] Ablowitz M. J., Ladik J. F., J. Math. Phys., 14:3 (1973), 594–600 | MR

[15] Leznov A. N., Saveliev M. V., Lett. Math. Phys., 3 (1979), 489–494 | DOI | MR | Zbl

[16] Leznov A. N., Saveliev M. V., Smirnov V. G., Explicit solution to two dimensionalized Volterra equation, Preprint 80-13, IHEP, Serpuhov, 1981 | MR

[17] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[18] Krichever I. M., UMN, 33:4 (1978), 215–216 | MR | Zbl

[19] Sall M. A., Matveev V. B., Probl. matem. fiz., 1979, no. 9, 128–133 | MR | Zbl