Quantization of flows of an ideal fluid
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 2, pp. 318-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility of solenoidal flow of an ideal quantum fluid without singularities is demonstrated. This is done by means of the formalism of diffeomorphism groups.
@article{TMF_1982_53_2_a12,
     author = {V. K. Tkachenko},
     title = {Quantization of flows of an~ideal fluid},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {318--320},
     year = {1982},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a12/}
}
TY  - JOUR
AU  - V. K. Tkachenko
TI  - Quantization of flows of an ideal fluid
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 318
EP  - 320
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a12/
LA  - ru
ID  - TMF_1982_53_2_a12
ER  - 
%0 Journal Article
%A V. K. Tkachenko
%T Quantization of flows of an ideal fluid
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 318-320
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a12/
%G ru
%F TMF_1982_53_2_a12
V. K. Tkachenko. Quantization of flows of an ideal fluid. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 2, pp. 318-320. http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a12/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 431 pp. | MR

[2] Bijl A., de Boer A., Michels I., Physica, 8 (1941), 655 | DOI | Zbl

[3] Onsager L., Nuovo Cim. Suppl., 6 (1949), 279 | DOI | MR

[4] Feynman R. P., Progr. in Low Temperature Phys., 1 (1955), 17 | DOI

[5] Hall H. E., Vinen W. F., Proc. Roy. Soc. (London), A238 (1956), 215 | DOI | Zbl

[6] Pellam J. R., Phys. Rev. Lett., 5:5 (1960), 189–191 | DOI

[7] Tkachenko V. K., ZhETF, 67 (1974), 1984 | MR