Application of inverse scattering method to singular solutions of nonlinear equations. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 2, pp. 163-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Jost solutions and the transition matrix for the Zakharov–Shabat system are constructed in the case of potentials that have a finite number of $x^{-1}$ singularities. The analytic properties of the transition matrix are investigated and scattering data are introduced.
@article{TMF_1982_53_2_a0,
     author = {V. A. Arkad'ev and A. K. Pogrebkov and M. K. Polivanov},
     title = {Application of inverse scattering method to singular solutions of nonlinear {equations.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--180},
     year = {1982},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a0/}
}
TY  - JOUR
AU  - V. A. Arkad'ev
AU  - A. K. Pogrebkov
AU  - M. K. Polivanov
TI  - Application of inverse scattering method to singular solutions of nonlinear equations. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 163
EP  - 180
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a0/
LA  - ru
ID  - TMF_1982_53_2_a0
ER  - 
%0 Journal Article
%A V. A. Arkad'ev
%A A. K. Pogrebkov
%A M. K. Polivanov
%T Application of inverse scattering method to singular solutions of nonlinear equations. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 163-180
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a0/
%G ru
%F TMF_1982_53_2_a0
V. A. Arkad'ev; A. K. Pogrebkov; M. K. Polivanov. Application of inverse scattering method to singular solutions of nonlinear equations. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 2, pp. 163-180. http://geodesic.mathdoc.fr/item/TMF_1982_53_2_a0/

[1] Kruskal M. D., Lectures in Appl. Math., 15 (1974), 61–83 | MR

[2] Airault H., McKean H. P., Moser J., Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR | Zbl

[3] Calogero F., Nuovo Cim., 43B:2 (1978), 177–241 | DOI | MR

[4] Dzhordzhadze G. P., Pogrebkov A. K., Polivanov M. K., TMF, 40:2 (1979), 221–234 | MR | Zbl

[5] Pogrebkov A. K., TMF, 45:2 (1980), 161–170 | MR | Zbl

[6] Pogrebkov A. K., Lett. Math. Phys., 5 (1981), 277–285 | DOI | MR | Zbl

[7] Pogrebkov A. K., Lett. Math. Phys., 6 (1982), 243–248 ; Pogrebkov A. K., Polivanov M. C., Particles and Fields in Classical Non-linear Models, Preprint ICTP, IC/81/237, Trieste, Italy, 1981 | DOI | MR | Zbl | MR

[8] Dzhordzhadze G. P., Pogrebkov A. K., Polivanov M. K., Obobschennye funktsii i ikh primeneniya v matematicheskoi fizike, Sb., MIAN, VTsAN, M., 1981, 219–222

[9] Zakharov V. E., Shabat A. B., ZhETF, 64:3 (1973), 1627–1639

[10] Zakharov V. E., Shabat A. B., ZhETF, 61:1 (1971), 118–134 | MR

[11] Gerdzhikov V. S., Kulish P. P., TMF, 39:1 (1979), 69–74 | MR

[12] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., Studies Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl