Expansion of single-particle distribution functions with respect to effective long-range potentials
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 68-76
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a classical system of interacting particles with charges and rigid dipole moments an expansion is constructed with respect to irreducible diagrams for the single-particle distribution function by resummation of the functional series with respect to the electrostatic part of the interaction. This expansion is a series in an effective “dressed” potential, and in contrast to the original expansion does not contain long-range Coulomb divergences. As an illustration, the asymptotic behavior of the single-particle distribution function in the surface layer of a polar liquid is obtained on the basis of the direct selection and summation of the important diagrams.
			
            
            
            
          
        
      @article{TMF_1982_53_1_a6,
     author = {V. L. Kuz'min},
     title = {Expansion of single-particle distribution functions with respect to effective long-range potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--76},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a6/}
}
                      
                      
                    TY - JOUR AU - V. L. Kuz'min TI - Expansion of single-particle distribution functions with respect to effective long-range potentials JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 68 EP - 76 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a6/ LA - ru ID - TMF_1982_53_1_a6 ER -
V. L. Kuz'min. Expansion of single-particle distribution functions with respect to effective long-range potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 68-76. http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a6/
