Expansion of single-particle distribution functions with respect to effective long-range potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 68-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a classical system of interacting particles with charges and rigid dipole moments an expansion is constructed with respect to irreducible diagrams for the single-particle distribution function by resummation of the functional series with respect to the electrostatic part of the interaction. This expansion is a series in an effective “dressed” potential, and in contrast to the original expansion does not contain long-range Coulomb divergences. As an illustration, the asymptotic behavior of the single-particle distribution function in the surface layer of a polar liquid is obtained on the basis of the direct selection and summation of the important diagrams.
@article{TMF_1982_53_1_a6,
     author = {V. L. Kuz'min},
     title = {Expansion of single-particle distribution functions with respect to effective long-range potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--76},
     year = {1982},
     volume = {53},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a6/}
}
TY  - JOUR
AU  - V. L. Kuz'min
TI  - Expansion of single-particle distribution functions with respect to effective long-range potentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 68
EP  - 76
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a6/
LA  - ru
ID  - TMF_1982_53_1_a6
ER  - 
%0 Journal Article
%A V. L. Kuz'min
%T Expansion of single-particle distribution functions with respect to effective long-range potentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 68-76
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a6/
%G ru
%F TMF_1982_53_1_a6
V. L. Kuz'min. Expansion of single-particle distribution functions with respect to effective long-range potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 68-76. http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a6/

[1] Barker J. A., Henderson D., J. Chem. Phys., 47:7 (1967), 2856–2863 | DOI

[2] Andersen H. C., Chandler D., Weeks J. D., J. Chem. Phys., 56:9 (1972), 3812–3823 | DOI

[3] Stell G., Lebowitz J. L., J. Chem. Phys., 49:9 (1968), 3706–3717 | DOI

[4] Hauge E. H., Hemmer P. C., J. Chem. Phys., 45:1 (1966), 323–327 | DOI

[5] Yukhnovskii I. R., Vydelenie sistemy otscheta v metode kollektivnykh peremennykh, Preprint ITF-74-149R, ITF, Kiev, 1974

[6] Golovko M. F., Pizio O. A., UFZh, 21:4 (1976), 653–662

[7] Yukhnovskii I. R., Golovko M. F., Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem, Naukova dumka, Kiev, 1980, 350 pp. | MR

[8] Kuzmin V. L., TMF, 31 (1977), 239–245 | MR

[9] Wertheim M. S., Mol. Phys., 26:5 (1973), 1425–1444 ; 36 (1978), 1217–1240 | DOI | DOI

[10] Blum L., J. Stat. Phys., 18:2 (1978), 451–474 | DOI | MR

[11] Adelman S. A., Deutch J. M., J. Chem. Phys., 60:11 (1974), 3935–3949 | DOI

[12] Hoye J. S., Stell G., J. Chem. Phys., 64:5 (1976), 1952–1966 | DOI

[13] Hoye J. S., Lebowitz J. L., Stell G., J. Chem. Phys., 61:8 (1974), 3253–3260 | DOI

[14] Kuzmin V. L., TMF, 44:1 (1980), 75–84 | MR

[15] Morita T., Hiroike K., Progr. Theor. Phys., 25:2 (1961), 531–578 | MR

[16] Mayer J., J. Chem. Phys., 18:5 (1950), 1426–1436 | DOI

[17] Kuni F. M., ZhSKh, 9:5 (1968), 939–943

[18] Nienhuis G., Deutch J. M., J. Chem. Phys., 55:12 (1971), 4213–4229 | DOI

[19] Storonkin B. A., TMF, 25:3 (1975), 395–406 | MR

[20] Kuni F. M., Rusanov A. I., Kolloidnyi zh., 32:2 (1970), 232–237; 33:1 (1971), 121–127; 33:2, 238–244

[21] Kuni F. M.,, Rusanov A. I., ZhFKh, 42:5 (1968), 849–856; 43:8 (1969), 1546–1551

[22] Kuni F. M., Kuzmin V. L., DAN SSSR, 184:1 (1969), 132–135

[23] Vanin A. I., Kolloidnyi zh., 42:3 (1980), 445–451

[24] Storonkin B. A., Kuni F. M., 100 let teorii kapillyarnosti Gibbsa, LGU, L., 1978, 163–165

[25] Dzyaloshinskii I. E., Lifshits E. M., Pitaevskii L. P., UFN, 73:3 (1961), 381–422 | DOI