Nonlinear Schrödinger equation with noncompact isogroup
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 55-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of the nonlinear Schrödinger equation with noncompact isogroup are investigated. The example of the $U(1,1)$ nonlinear Schrödinger equation reveals the significant differences between this system and the previously considered vector nonlinear Schrödinger equation. The main feature – the large set of admissible boundary conditions on the field functions – leads to a rich spectrum of solutions of the system. Four types of boundary conditions and the corresponding soliton solutions are considered for the $U(1,1)$ model. Quasiclassical quantization of the solitons admits an interpretation in the language of “drops” and “bubbles” as bound states of a large number of bosons of the basic fields subject to the thermodynamic relations for a mixture of gases. The system is a continuous “analog” of the Hubbard model for zero-value boundary conditions, and therefore the paper ends with a discussion of this case.
@article{TMF_1982_53_1_a5,
     author = {V. G. Makhan'kov and O. K. Pashaev},
     title = {Nonlinear {Schr\"odinger} equation with noncompact isogroup},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--67},
     year = {1982},
     volume = {53},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a5/}
}
TY  - JOUR
AU  - V. G. Makhan'kov
AU  - O. K. Pashaev
TI  - Nonlinear Schrödinger equation with noncompact isogroup
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 55
EP  - 67
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a5/
LA  - ru
ID  - TMF_1982_53_1_a5
ER  - 
%0 Journal Article
%A V. G. Makhan'kov
%A O. K. Pashaev
%T Nonlinear Schrödinger equation with noncompact isogroup
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 55-67
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a5/
%G ru
%F TMF_1982_53_1_a5
V. G. Makhan'kov; O. K. Pashaev. Nonlinear Schrödinger equation with noncompact isogroup. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 55-67. http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a5/

[1] Zakharov V. E., Shabat A. B., ZhETF, 61 (1971), 118

[2] Zakharov V. E., Shabat A. B., ZhETF, 64 (1973), 1627

[3] Faddeev L. D., Preprint R2-12462, OIYaI, Dubna, 1978

[4] Sklyanin E. K., Differentsialnaya geometriya, gruppy Li i mekhanika, III, Nauka, L., 1980, 55 pp. | MR | Zbl

[5] Berezin F. A., Pokhil G. P., Finkelberg V. M., Vestn. MGU, seriya 1, 1964, no. 1, 21 | MR

[6] Lieb E. H., Liniger W., Phys. Rev., 130 (1963), 1605 | DOI | MR | Zbl

[7] ter Haar D., Preprint Ret 54/77, Univ., Oxford:, 1977 | MR

[8] Manakov S. V., ZhETF, 69 (1973), 505

[9] Yang C. N., Phys. Rev. Lett., 19 (1967), 1312 | DOI | MR | Zbl

[10] Kulish P. P., Preprint R-3-79, LOMI, Leningrad, 1979

[11] Lindner U., Fedyanin V. K., Phys. Stat. Sol. (b), 89 (1978), 123 | DOI | MR

[12] Makhankov V. G., Phys. Lett. A, 81 (1981), 156 | DOI | MR

[13] Makhankov V. G., Makhaldiani N. V., Pashaev O. K., Phys. Lett. A, 81 (1981), 161 | DOI | MR

[14] Makhankov V. G., Pashaev O. K., Preprint E2-81-264, JINR, Dubna, 1981

[15] Makhankov V. G., Pashaev O. K., Preprint E2-81-540, JINR, Dubna, 1981

[16] Makhankov V. G., Pashaev O. K., Preprint E2-81-831, JINR, Dubna, 1981; Phys. Lett. A, 85 (1982), 251 | MR