Exact solution of covariant two-particle one-time equation with superposition of one-boson exchange quasipotentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 32-42
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relativistic bound state of two scalar particles is considered in the Logunov–Tavkhelidze quasipotential approach in the case when the quasipotential is a superposition of a one-meson and a one-photon propagator. For the centrally symmetric case, a relativistic quantization condition for the energy levels is obtained and wave functions are constructed in the momentum representation and in the relativistic configuration representation.
@article{TMF_1982_53_1_a3,
     author = {V. N. Kapshai and N. B. Skachkov},
     title = {Exact solution of covariant two-particle one-time equation with superposition of one-boson exchange quasipotentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--42},
     year = {1982},
     volume = {53},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a3/}
}
TY  - JOUR
AU  - V. N. Kapshai
AU  - N. B. Skachkov
TI  - Exact solution of covariant two-particle one-time equation with superposition of one-boson exchange quasipotentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 32
EP  - 42
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a3/
LA  - ru
ID  - TMF_1982_53_1_a3
ER  - 
%0 Journal Article
%A V. N. Kapshai
%A N. B. Skachkov
%T Exact solution of covariant two-particle one-time equation with superposition of one-boson exchange quasipotentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 32-42
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a3/
%G ru
%F TMF_1982_53_1_a3
V. N. Kapshai; N. B. Skachkov. Exact solution of covariant two-particle one-time equation with superposition of one-boson exchange quasipotentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 32-42. http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a3/

[1] Logunov A. A., Tavkhelidze A. N., Nuovo Cim., 29:2 (1963), 380–400 | DOI | MR

[2] Shirokov Yu. M., ZhETF, 35:4 (1958), 1005–1013

[3] Matveev V. A., Muradyan R. M., Tavkhelidze A. N., Relativistically covariant equations for two particles in quantum field theory, Preprint E2-3498, JINR, Dubna, 1967

[4] Chernikov N. A., Svyaz teorii otnositelnosti s geometriei Lobachevskogo, Preprint R2-7231, OIYaI, Dubna, 1961; ЭЧАЯ, 4:3 (1973), 773–810 ; Смородинский Я. А., Атомная энергия, 14:1 (1963), 110–121 | MR

[5] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., Nuovo Cim., 55A:2 (1968), 233–257 ; ЭЧАЯ, 2:3 (1972), 635–678 | DOI

[6] Braun Dzh. E., Dzhekson A. D., Nuklon-nuklonnye vzaimodeistviya, Atomizdat, M., 1979

[7] Shapiro I. S., DAN SSSR, 106 (1956), 647 | Zbl

[8] Skachkov N. B., TMF, 25:3 (1975), 313 | MR

[9] Skachkov N. B., Solovtsov I. L., TMF, 41:2 (1979), 205–219

[10] Kadyshevskii V. G., Tavkhelidze A. N., “Kvazipotentsialnyi metod v relyativistskoi zadache dvukh tel”, Problemy teoreticheskoi fiziki, Sbornik, posvyaschennyi 60-letiyu N. N. Bogolyubova, Nauka, M., 1969, 261–277 | MR

[11] Skachkov N. B., Solovtsov I. L., EChAYa, 9:1 (1978), 5–47 | MR