@article{TMF_1982_53_1_a0,
author = {V. S. Vladimirov and I. V. Volovich},
title = {Ising model with magnetic field and the diophantine moment problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--15},
year = {1982},
volume = {53},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a0/}
}
V. S. Vladimirov; I. V. Volovich. Ising model with magnetic field and the diophantine moment problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a0/
[1] Yang C. N., Lee T. D., “Statistical theory of equations of state and phase transitions”, Phys. Rev., 87:3 (1952), 404–419 | DOI | MR
[2] Abe R., “Note on the critical behavior of Ising ferromagnets”, Progr. Theor. Phys., 38:1 (1967), 72–80 | DOI
[3] Suzuki M., “A theory of the second order phase transitions in spin systems. II: Complex magnetic field”, Progr. Theor. Phys., 38:6 (1967), 1225–1242 | DOI | MR
[4] Barnsley M., Bessis D., Moussa P., “The Diophantine moment problem and the analytic structure in the activity of the ferromagnetic Ising model”, J. Math. Phys., 20:4 (1979), 535–552 | DOI | MR
[5] Vladimirov V. S., “Diofantova problema momentov i model Izinga”, DAN SSSR, 264:6 (1982), 1301–1305 | MR | Zbl
[6] Helson H., “Note on harmonic functions”, Proc. Amer. Math. Soc., 4:5 (1953), 686–691 | DOI | MR | Zbl
[7] Nevanlinna R., Odnoznachnye analiticheskie funktsii, Gostekhizdat, Leningrad, 1941, 338 pp. | MR
[8] Griffiths R. B., “Correlations in Ising ferromagnets”, J. Math. Phys., 8:3 (1967), 478–489 | DOI
[9] Ito K. R., “Remarks on the relation between the Lee-Yang circle theorem and the correlation inequalities”, Commun. Math. Phys., 47:2 (1976), 143–154 | DOI | MR
[10] Yang C. N., “The spontaneous magnetization of a two-dimensional Ising Model”, Phys. Rev., 85 (1952), 808–816 | DOI | MR | Zbl
[11] N. N. Bogolyubov, Kvazisrednie v zadachakh statisticheskoi mekhaniki. Izbr. tr., t. 3, Naukova dumka, Kiev, 1970 | MR
[12] Loomis L. H., “The converse of the Fatou theorem for positive harmonic functions”, Trans. Amer. Math. Soc., 53:2 (1943), 239–250 | DOI | MR | Zbl
[13] Rudin U., Teoriya funktsii v polikruge, Mir, M., 1974 | MR | Zbl
[14] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR
[15] Grenander U., Sege G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961 | MR