Bifurcation of point sources and contour sources of nonlinear fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 393-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of static point sources of a nonlinear scalar field with nonlinearity $\varphi^\nu$ (leading term as $|\varphi|\to\infty$) in a space of dimension $\gamma\geqslant2$ is solved. For $\nu<\nu_c=\gamma/(\gamma-2)$, two different types of point source are found. For $\gamma>2$ when $\nu\geqslant\nu_c$, there are no point sources. In three-dimensional space, contour sources are possible instead of them. The transition from a distributed sources to a point source when the size of the distributed source tends to zero is also considered.
@article{TMF_1982_52_3_a5,
     author = {O. Sh. Rasizade},
     title = {Bifurcation of point sources and contour sources of nonlinear fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {393--404},
     year = {1982},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a5/}
}
TY  - JOUR
AU  - O. Sh. Rasizade
TI  - Bifurcation of point sources and contour sources of nonlinear fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 393
EP  - 404
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a5/
LA  - ru
ID  - TMF_1982_52_3_a5
ER  - 
%0 Journal Article
%A O. Sh. Rasizade
%T Bifurcation of point sources and contour sources of nonlinear fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 393-404
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a5/
%G ru
%F TMF_1982_52_3_a5
O. Sh. Rasizade. Bifurcation of point sources and contour sources of nonlinear fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 393-404. http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a5/

[1] Mandula J. E., Phys. Lett., 67B:2 (1977), 175–178 ; Sikivie P., Weiss N., Phys. Rev., D18:10 (1978), 3809–3821 ; Jackiw R., Jackobs L., Rebbi C., Phys. Rev., D20:2 (1979), 474–486 | DOI | MR | MR

[2] Rasizade O. Sh., TMF, 48:2 (1981), 197–209 | MR

[3] Sikivie P., Weiss N., Phys. Rev., D20:2 (1979), 487–490 | MR

[4] Schiff L., Phys. Rev., 84:1 (1951), 1–9 | DOI | MR | Zbl

[5] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954 | MR

[6] Chandrasekkhar S., Vvedenie v uchenie o stroenii zvezd, IL, M., 1950

[7] Sansone D., Obyknovennye differentsialnye uravneniya, t. 2, IL, M., 1954 | MR

[8] Filippov A. T., EChAYa, 22:3 (1980), 735–801 | MR

[9] Jackiw R., Rossi P., Phys. Rev., D21:2 (1980), 426–445 ; Расизаде О. Ш., ТМФ, 49:1 (1981), 36–47 ; Malec E., J. Phys. A, 13:8 (1980), 2609–2614 | MR | MR | DOI | MR | Zbl

[10] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[11] Christiansen et al., Appl. Phys. Lett., 39:2 (1981), 170–172 | DOI

[12] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959 | MR