Solution of Chew--Low equations in the quadratic approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 384-392
Voir la notice de l'article provenant de la source Math-Net.Ru
The second-order power contributions are found in the framework of the iterative scheme of construction of the general Chew–Low equation [1] proposed by Gerdt [2]. In contrast to the linear approximation obtained by Gerdt, the quadratic approximation has an infinite number of poles in the complex plane of the uniformizing variable $w$. It is shown that allowance for the quadratic corrections in the general solution makes it possible to distinguish the class of solutions possessing the required Born pole at the point $w=0$. The most cumbersome part of the analytic computations in the present study was done on a computer using the algebraic system REDUCE-2.
@article{TMF_1982_52_3_a4,
author = {V. P. Gerdt and A. Yu. Zharkov},
title = {Solution of {Chew--Low} equations in the quadratic approximation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {384--392},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a4/}
}
TY - JOUR AU - V. P. Gerdt AU - A. Yu. Zharkov TI - Solution of Chew--Low equations in the quadratic approximation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 384 EP - 392 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a4/ LA - ru ID - TMF_1982_52_3_a4 ER -
V. P. Gerdt; A. Yu. Zharkov. Solution of Chew--Low equations in the quadratic approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 384-392. http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a4/