Solution of Chew--Low equations in the quadratic approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 384-392

Voir la notice de l'article provenant de la source Math-Net.Ru

The second-order power contributions are found in the framework of the iterative scheme of construction of the general Chew–Low equation [1] proposed by Gerdt [2]. In contrast to the linear approximation obtained by Gerdt, the quadratic approximation has an infinite number of poles in the complex plane of the uniformizing variable $w$. It is shown that allowance for the quadratic corrections in the general solution makes it possible to distinguish the class of solutions possessing the required Born pole at the point $w=0$. The most cumbersome part of the analytic computations in the present study was done on a computer using the algebraic system REDUCE-2.
@article{TMF_1982_52_3_a4,
     author = {V. P. Gerdt and A. Yu. Zharkov},
     title = {Solution of {Chew--Low} equations in the quadratic approximation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {384--392},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a4/}
}
TY  - JOUR
AU  - V. P. Gerdt
AU  - A. Yu. Zharkov
TI  - Solution of Chew--Low equations in the quadratic approximation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 384
EP  - 392
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a4/
LA  - ru
ID  - TMF_1982_52_3_a4
ER  - 
%0 Journal Article
%A V. P. Gerdt
%A A. Yu. Zharkov
%T Solution of Chew--Low equations in the quadratic approximation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 384-392
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a4/
%G ru
%F TMF_1982_52_3_a4
V. P. Gerdt; A. Yu. Zharkov. Solution of Chew--Low equations in the quadratic approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 384-392. http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a4/