Integration over surfaces in superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 375-383
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of $(m,n)$-densities, which are the most general entities that can be integrated over a $(m,n)$-dimensional surface in superspace. It is shown that the Bernshtein–Leites integral forms can be interpreted as densities; the class of densities corresponding to these forms is characterized.
@article{TMF_1982_52_3_a3,
author = {A. V. Gaiduk and H. M. Khudaverdian and A. S. Schwarz},
title = {Integration over surfaces in superspace},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {375--383},
year = {1982},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a3/}
}
A. V. Gaiduk; H. M. Khudaverdian; A. S. Schwarz. Integration over surfaces in superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 375-383. http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a3/
[1] Bernshtein I. N., Leites D. A., Funkts. analiz i ego prilozh., 11:1 (1976), 55–56
[2] Bernshtein I. N., Leites D. A., Funkts. analiz i ego prilozh., 11:3 (1976), 70–71 | MR
[3] Schwarz A., Nucl. Phys., B171 (1980), 154–166 | DOI | MR
[4] Khudaverdyan O. M., Shvarts A. S., TMF, 46:2 (1981), 187–198 | MR
[5] Gayduk A. V., Romanov V. N., Schwarz A. S., Commun. Math. Phys., 79 (1981), 507–528 | DOI | MR
[6] Berezin F. A., Elementarnye chastitsy. Sedmaya shkola fiziki ITEF, no. 1, Atomizdat, M., 1980, 119 pp.