Integration over surfaces in superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 375-383
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of $(m,n)$-densities, which are the most general entities that can be integrated over a $(m,n)$-dimensional surface in superspace. It is shown that the
Bernshtein–Leites integral forms can be interpreted as densities; the class of
densities corresponding to these forms is characterized.
@article{TMF_1982_52_3_a3,
author = {A. V. Gaiduk and H. M. Khudaverdian and A. S. Schwarz},
title = {Integration over surfaces in superspace},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {375--383},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a3/}
}
TY - JOUR AU - A. V. Gaiduk AU - H. M. Khudaverdian AU - A. S. Schwarz TI - Integration over surfaces in superspace JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 375 EP - 383 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a3/ LA - ru ID - TMF_1982_52_3_a3 ER -
A. V. Gaiduk; H. M. Khudaverdian; A. S. Schwarz. Integration over surfaces in superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 375-383. http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a3/