Quasiclassical particle in a one-dimensional self-consistent field
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 491-494
Cet article a éte moissonné depuis la source Math-Net.Ru
Langer's method is used to construct a quasiclassical series of eigenfunctions for a one-dimensional self-consistent field equation.
@article{TMF_1982_52_3_a14,
author = {S. I. Chernykh},
title = {Quasiclassical particle in a~one-dimensional self-consistent field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {491--494},
year = {1982},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a14/}
}
S. I. Chernykh. Quasiclassical particle in a one-dimensional self-consistent field. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 491-494. http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a14/
[1] Lieb E. H., Simon B., Commun. Math. Phys., 53:3 (1977), 185–194 | DOI | MR
[2] Chadam J. M., Glassey R. T., J. Math. Phys., 16:5 (1975), 1122–1136 | DOI | MR
[3] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR
[4] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 | MR
[5] Erdeii A., Asimptoticheskie razlozheniya, Fizmatgiz, M., 1962
[6] Karasev M. V., Maslov V. P., TMF, 40:2 (1979), 235–244 | MR