Description of the phase with broken symmetry in the Ising model by the method of quasi-averages
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 473-490 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of equations for the correlation functions of the Ising model is obtained. It is shown that this system of equations is solvable at a sufficiently low temperature and a rapidly converging iterative procedure is constructed which makes it possible to calculate with arbitrarily high accuracy the equation of state and the correlation functions of the Ising model. The first terms of the perturbation theory series are given.
@article{TMF_1982_52_3_a13,
     author = {Yu. P. Virchenko},
     title = {Description of the phase with broken symmetry in the {Ising} model by the method of quasi-averages},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--490},
     year = {1982},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a13/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
TI  - Description of the phase with broken symmetry in the Ising model by the method of quasi-averages
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 473
EP  - 490
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a13/
LA  - ru
ID  - TMF_1982_52_3_a13
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%T Description of the phase with broken symmetry in the Ising model by the method of quasi-averages
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 473-490
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a13/
%G ru
%F TMF_1982_52_3_a13
Yu. P. Virchenko. Description of the phase with broken symmetry in the Ising model by the method of quasi-averages. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 473-490. http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a13/

[1] Peierls R., Proc. Cambridge Phil. Soc., 32 (1936), 477–481 | DOI | Zbl

[2] Griffiths R. B., Phys. Rev., 136:2A (1964), 437–439 | DOI | MR | Zbl

[3] Dobrushin R. L., Teor. veroyatn. i ee primen., 10:2 (1965), 209–230 | MR | Zbl

[4] Dobrushin R. L., DAN SSSR, 160:5 (1965), 1046–1048 | MR

[5] Ryuel D., Statisticheskaya mekhanika, strogie rezultaty, Mir, M., 1971

[6] Ginibre J., Grossmann A., Ruelle D., Commun. Math. Phys., 3 (1966), 187–193 | DOI | MR

[7] Berezin F. A., Sinai Ya. G., Tr. Mosk. mat. obsch., 17 (1967), 197–212 | MR

[8] Minlos R. A., Sinai Ya. G., Tr. Mosk. mat. obsch., 17 (1967), 213–242

[9] Bogolyubov N. N., Kvazisrednie v zadachakh statisticheskoi mekhaniki, Preprint R-1451, OIYaI, Dubna, 1963; Избранные труды, т. 3

[10] Malyshev V. A., Usp. mat. nauk, 35:2 (1980), 3–53 | MR