Phase transition in a model of long polymers with excluded volume
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 453-462 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of long polymers interacting with one another through repulsive forces with an additional intramolecular interaction between neighboring atoms in a polymer chain is proposed. The existence of a thermodynamic limit of the free energy for such a system is proved. It is shown by the method of reflectional parity that the system undergoes a phase transition, i.e. the free energy is identically equal to zero at a temperature below a certain fixed temperature (ground state) and different from zero at high temperatures.
@article{TMF_1982_52_3_a11,
     author = {N. Angelesku and V. B. Priezzhev},
     title = {Phase transition in a~model of long polymers with excluded volume},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {453--462},
     year = {1982},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a11/}
}
TY  - JOUR
AU  - N. Angelesku
AU  - V. B. Priezzhev
TI  - Phase transition in a model of long polymers with excluded volume
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 453
EP  - 462
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a11/
LA  - ru
ID  - TMF_1982_52_3_a11
ER  - 
%0 Journal Article
%A N. Angelesku
%A V. B. Priezzhev
%T Phase transition in a model of long polymers with excluded volume
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 453-462
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a11/
%G ru
%F TMF_1982_52_3_a11
N. Angelesku; V. B. Priezzhev. Phase transition in a model of long polymers with excluded volume. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 3, pp. 453-462. http://geodesic.mathdoc.fr/item/TMF_1982_52_3_a11/

[1] Nagle J. F., J. Chem. Phys., 58:1 (1973), 252–264 | DOI

[2] Nagle J. F., Proc. Roy. Soc. Lond., A337 (1974), 569–589 | DOI

[3] Wiegel F. W., J. Stat. Phys., 13:6 (1975), 515–530 | DOI

[4] Kasteleyn P. W., J. Math. Phys., 4:2 (1963), 287–293 | DOI | MR

[5] Peierls R., Proc. Cambridge Phil. Soc., 32:3 (1936), 477–481 | DOI | Zbl

[6] Lebowitz J. L., Galavotti G. J., J. Math. Phys., 12:7 (1971), 1129–1133 | DOI

[7] Heilmann O. J., Lett. Nuovo Cim., 3:3 (1972), 95–98 | DOI

[8] Runnels L. K., Freares B. C., Commun. Math. Phys., 32:3 (1973), 191–204 | DOI | MR

[9] Abraham D. B., Heilmann O. J., J. Stat. Phys., 13:6 (1975), 461–472 | DOI | MR

[10] Fröhlich J., Israel R., Lieb E. H., Simon B., Commun. Math. Phys., 62:1 (1978), 1–34 | DOI | MR

[11] Abraham D. B., Heilmann O. J., J. Phys. A, 13:3 (1980), 1051–1062 | DOI | MR

[12] Heilmann O. J., Lieb E. H., J. Stat. Phys., 20:6 (1979), 679–693 | DOI | MR

[13] Cruber C., Kunz H., Commun. Math. Phys., 22:2 (1971), 133–161 | DOI | MR