Bounds on particle masses in the plannab approximation of two-dimensional chromodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 252-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some properties of the particle mass spectrum are investigated in the framework of two-dimensional quantum chromodynamics. For the case of a bound state of two scalar quarks (a meson) with $SU(n_c)$ coIor group in the $1/n_c$ approximation it is shown that the spectrum is discrete; lower bounds are obtained for its eigenvalues, and also upper bounds for some of the first eigenvalues. For a bound state of $N$ spinor quarks, bounds are obtained on the ground level in the planar approximation.
@article{TMF_1982_52_2_a9,
     author = {K. G. Klimenko and G. L. Rcheulishvili},
     title = {Bounds on particle masses in the plannab approximation of two-dimensional chromodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {252--262},
     year = {1982},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a9/}
}
TY  - JOUR
AU  - K. G. Klimenko
AU  - G. L. Rcheulishvili
TI  - Bounds on particle masses in the plannab approximation of two-dimensional chromodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 252
EP  - 262
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a9/
LA  - ru
ID  - TMF_1982_52_2_a9
ER  - 
%0 Journal Article
%A K. G. Klimenko
%A G. L. Rcheulishvili
%T Bounds on particle masses in the plannab approximation of two-dimensional chromodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 252-262
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a9/
%G ru
%F TMF_1982_52_2_a9
K. G. Klimenko; G. L. Rcheulishvili. Bounds on particle masses in the plannab approximation of two-dimensional chromodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 252-262. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a9/

[1] 'tHooft G., Nucl. Phys., B75:2 (1974), 461–470 ; “Gauge Theory for Strong Interactions”, New Phenomena In Subnuclear Physics, Part A, ed. A. Zichichi, Plenum, N.Y., 1977, 261 | DOI | MR

[2] Callan C. G., Jr., Coote N., Gross D., Phys. Rev., D13:6 (1976), 1649–1669

[3] Brower R. C., Spence W. Z., Weis J. H., Phys. Rev., D19:10 (1979), 3024–3048

[4] Federbush P., Tromba A., Phys. Rev., D15:10 (1977), 2913–2914 | MR

[5] Hildebrandt S., Vishjic V., Phys. Rev., D17:6 (1978), 1618–1623 | MR

[6] Shei S.-S., Tsao H.-S., Nucl. Phys., B141:2 (1978), 445–466 ; Tomaras T. N., Nucl. Phys., B163:1 (1980), 79–86 | DOI | MR | DOI

[7] Bardeen W. A., Pearson R. B., Rabinovici E., Phys. Rev., D21:4 (1980), 1037–1054 | MR

[8] Durgut M., Nucl. Phys., B116:1 (1976), 233–252 | DOI

[9] Bars I., Nucl. Phys., B111:2 (1976), 413–439 | DOI | MR

[10] Schlereth H., Nuovo Cim., 44A:1 (1973), 150–162

[11] Webber B. R., Nucl. Phys., B153:2 (1979), 455–466 | DOI

[12] Klimenko K. G., Rcheulishvili G. L., Svoistva spektra mass mezonov v dvumernoi skalyarnoi khromodinamike, Preprint 81-77, IFVE, Serpukhov, 1981

[13] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 19 pp. | MR

[14] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979, 350–357 | MR

[15] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 216–227 | MR | Zbl

[16] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. I, Nauka, M., 1973, 61 pp. | MR

[17] Onofri E., J. Math. Phys., 21:10 (1980), 2511–2520 | DOI | MR | Zbl

[18] Witten E., Nucl. Phys., B160:1 (1979), 57–115 | DOI | MR