Group structure and the basis of conservation laws
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 244-251
Cet article a éte moissonné depuis la source Math-Net.Ru
The derivation of conservation laws for invariant variational problems is based on Noether's identity. It is shown that this identity also makes it possible to establish a connection between a basis of conservation laws (with respect to the group $G$ admitted by the considered system of differential equations) and the structure of the Lie algebra of $G$. This provides a justifieation for the basis construction scheme proposed by Ibragimov.
@article{TMF_1982_52_2_a8,
author = {R. S. Khamitova},
title = {Group structure and the basis of conservation laws},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {244--251},
year = {1982},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a8/}
}
R. S. Khamitova. Group structure and the basis of conservation laws. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 244-251. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a8/
[1] Ibragimov N. Kh., Dinamika sploshnoi sredy, no. 38, Novosibirsk, 1979, 26 | MR
[2] Anderson R. L., Ibragimov N. H., Lie-Bäcklund Transformations in Applications, SIAM, Philadelphia, 1979 | MR
[3] Ibragimov N. Kh., Matem. sb., 109:2 (1979), 229 | MR | Zbl
[4] Noether E., “Invariante Variationsprobleme”, Göttingen Nachrichten, math.-phys. Kl., 2 (1918), 235
[5] Ibragimov N. Kh., TMF, 1:3 (1969), 350–359 | MR
[6] Kucharchyk P., Teoria grup Liego w zastosowaniu do równán rózniczkowych cza̧stkowych, IPPT PAN, Warszawa, 1967
[7] Sukhinin S. V., Dinamika sploshnoi sredy, no. 36, Novosibirsk, 1978, 130 | MR
[8] Khamitova R. S., DAN SSSR, 248:4 (1979), 798–801 | MR