Associative algebra of functionals containing $\delta(x)$ and~$r^n$
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 327-331
Voir la notice de l'article provenant de la source Math-Net.Ru
Shirokov's results [1, 2] are generalized to the case of arbitrary dimension. This leads to the construction of an associative algebra with differentiation containing the elements $\delta(\mathbf x)$ and $r^n$ ($\mathbf x=(x_1,\dots,x_d)$, $r=|\mathbf x|$, $n=0,\pm1,\pm2,\dots$). The algebra is realized on a subset of functionals defined on the space of functions which can be represented in the form $\varphi=r^{-2n_1}\varphi_1+r^{-2n_2{-1}}\varphi_2$,
$\varphi_{1,2}\in S(\mathrm R^d)$.
@article{TMF_1982_52_2_a17,
author = {V. A. Smirnov},
title = {Associative algebra of functionals containing $\delta(x)$ and~$r^n$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {327--331},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a17/}
}
V. A. Smirnov. Associative algebra of functionals containing $\delta(x)$ and~$r^n$. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 327-331. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a17/