Associative algebra of functionals containing $\delta(x)$ and $r^n$
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 327-331
Cet article a éte moissonné depuis la source Math-Net.Ru
Shirokov's results [1, 2] are generalized to the case of arbitrary dimension. This leads to the construction of an associative algebra with differentiation containing the elements $\delta(\mathbf x)$ and $r^n$ ($\mathbf x=(x_1,\dots,x_d)$, $r=|\mathbf x|$, $n=0,\pm1,\pm2,\dots$). The algebra is realized on a subset of functionals defined on the space of functions which can be represented in the form $\varphi=r^{-2n_1}\varphi_1+r^{-2n_2{-1}}\varphi_2$, $\varphi_{1,2}\in S(\mathrm R^d)$.
@article{TMF_1982_52_2_a17,
author = {V. A. Smirnov},
title = {Associative algebra of functionals containing $\delta(x)$ and~$r^n$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {327--331},
year = {1982},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a17/}
}
V. A. Smirnov. Associative algebra of functionals containing $\delta(x)$ and $r^n$. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 327-331. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a17/
[1] Shirokov Yu. M., TMF, 39:3 (1979), 291–301 | MR | Zbl
[2] Shirokov Yu. M., TMF, 40:3 (1979), 348–354 | MR | Zbl
[3] Shirokov Yu. M., TMF, 41:3 (1979), 291–302 | MR | Zbl
[4] Shirokov Yu. M., TMF, 42:1 (1980), 45–49 | MR
[5] Gelfand I. M., Shilov G. E., Obobschennye funktsii, vyp. 1, Fizmatgiz, M., 1958 | MR
[6] Shirokov Yu. M., TMF, 15:1 (1973), 20–42 | MR