Equivalence of Gibbs ensembles for classical lattice systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 284-291

Voir la notice de l'article provenant de la source Math-Net.Ru

For lattice systems with many-particle absolutely summable interaction it is shown for all $\beta>0$ and $1>\rho>0$that the limiting generating functionals of the canonical and grand canonical ensembles satisfy the Bogolyubov equation and in this sense the ensembles are equivalent. For systems with binary interaction, it is shown that the Bogolyubov equation has several solutions for the parameters $(z,\beta)$ for which the one-to-one correspondence with the parameters $(\rho,\beta)$ is broken.
@article{TMF_1982_52_2_a12,
     author = {V. V. Krivolapova},
     title = {Equivalence of {Gibbs} ensembles for classical lattice systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {284--291},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a12/}
}
TY  - JOUR
AU  - V. V. Krivolapova
TI  - Equivalence of Gibbs ensembles for classical lattice systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 284
EP  - 291
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a12/
LA  - ru
ID  - TMF_1982_52_2_a12
ER  - 
%0 Journal Article
%A V. V. Krivolapova
%T Equivalence of Gibbs ensembles for classical lattice systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 284-291
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a12/
%G ru
%F TMF_1982_52_2_a12
V. V. Krivolapova. Equivalence of Gibbs ensembles for classical lattice systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 284-291. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a12/