Equivalence of Gibbs ensembles for classical lattice systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 284-291
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For lattice systems with many-particle absolutely summable interaction it is shown
for all $\beta>0$ and $1>\rho>0$that the limiting generating functionals of the canonical  and grand canonical ensembles satisfy the Bogolyubov equation and in this sense the ensembles are equivalent. For systems with binary interaction, it is shown that the Bogolyubov equation has several solutions for the parameters 
$(z,\beta)$ for which the one-to-one correspondence with the parameters 
$(\rho,\beta)$ is broken.
			
            
            
            
          
        
      @article{TMF_1982_52_2_a12,
     author = {V. V. Krivolapova},
     title = {Equivalence of {Gibbs} ensembles for classical lattice systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {284--291},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a12/}
}
                      
                      
                    V. V. Krivolapova. Equivalence of Gibbs ensembles for classical lattice systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 284-291. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a12/
