Equivalence of Gibbs ensembles for classical lattice systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 284-291
Cet article a éte moissonné depuis la source Math-Net.Ru
For lattice systems with many-particle absolutely summable interaction it is shown for all $\beta>0$ and $1>\rho>0$that the limiting generating functionals of the canonical and grand canonical ensembles satisfy the Bogolyubov equation and in this sense the ensembles are equivalent. For systems with binary interaction, it is shown that the Bogolyubov equation has several solutions for the parameters $(z,\beta)$ for which the one-to-one correspondence with the parameters $(\rho,\beta)$ is broken.
@article{TMF_1982_52_2_a12,
author = {V. V. Krivolapova},
title = {Equivalence of {Gibbs} ensembles for classical lattice systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {284--291},
year = {1982},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a12/}
}
V. V. Krivolapova. Equivalence of Gibbs ensembles for classical lattice systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 284-291. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a12/
[1] Glukhikh N. V., Nazin G. I., TMF, 38:3 (1979), 417–421
[2] Krivolapova V. V., Nazin G. I., TMF, 47:3 (1981), 362–374 | MR
[3] Khalfina A. M., Matem. sb., 80 (1969), 3–51
[4] Dobrushin R. L., Minlos R. A., Teoriya veroyatn. i ee primen., 12:4 (1967), 595–618 | MR
[5] Preston Ch., “Random fields”, Lecture Notes in Math., 534, 1976 | DOI | MR | Zbl
[6] Dobrushin R. L., Funkts. analiz i ego prilozh., 2:4 (1968), 31–43 | MR | Zbl