Quasiclassical scattering of fast particles near singularities of the classical cross section
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 270-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quasiclassical asymptotic behavior of the eikonal amplitude of scattering by a potential satisfying the Laplace equation is investigated in the neighborhood of the zero and focal values of the momentum transfer. It is shown that the corresponding reference integrals describing a degeneracy of arbitrary order in the two-dimensional method of stationary phase admit separation of the variables in the complex space of the impact parameter. They are expressed in terms of special functions that generalize the Airy and Bessel functions. The basic properties of these functions and the transition to the ordinary quasiclassieal behavior with increasing distance from the point of degeneracy are studied.
@article{TMF_1982_52_2_a11,
     author = {D. I. Abramov},
     title = {Quasiclassical scattering of fast particles near singularities of the classical cross section},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {270--283},
     year = {1982},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a11/}
}
TY  - JOUR
AU  - D. I. Abramov
TI  - Quasiclassical scattering of fast particles near singularities of the classical cross section
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 270
EP  - 283
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a11/
LA  - ru
ID  - TMF_1982_52_2_a11
ER  - 
%0 Journal Article
%A D. I. Abramov
%T Quasiclassical scattering of fast particles near singularities of the classical cross section
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 270-283
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a11/
%G ru
%F TMF_1982_52_2_a11
D. I. Abramov. Quasiclassical scattering of fast particles near singularities of the classical cross section. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 270-283. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a11/

[1] Glauber R. J., “High energy collision theory”, Lectures in theoretical physics, 2, Inter. Sci. Publ., N. Y., 1959, 315–414 | MR

[2] Glauber R., UFN, 103:4 (1971), 641–673 | DOI

[3] Joachain C., Byron F., Phys. Rep., 34:4 (1911), 233–324

[4] Khudyakov S. V., ZhETF, 56:3 (1969), 938–949 | MR

[5] Khudyakov S. V., ZhETF, 57:3 (1969), 927–937

[6] Demkov Yu. N., Pisma v ZhTF, 6:14 (1980), 833–837

[7] Demkov Yu. N., ZhETF, 80:1 (1981), 127–143 | MR

[8] Abramov D. I., Demkov Yu. N., Scherbakov A. P., ZhETF, 80:4 (1981), 1334–1347

[9] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974, 752 pp. | MR

[10] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, 368 pp. | MR

[11] Komarov I. V., Scherbakov A. P., Vestn. LGU, 1979, no. 16, 24–31 | MR

[12] Komarov I. V., Shcherbakov A. P., “Catastrophes in scattering by spheroidal potential”, Abstracts of Papers X1-th ICPEAC, Kyoto, 1979, 1022 | MR

[13] Berry M. V., Nye J. F., Wright F. J., Phil. Trans. Roy. Soc. London, A291:1382 (1979), 453–484 | DOI | MR

[14] Gursa E., Kurs matematicheskogo analiza, t. 2, ONTI, M., 1936, 563 pp.

[15] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 1, 2, Nauka, M., 1973 | MR

[16] Buslaev V. S., Skriganov M. M., TMF, 19:2 (1974), 217–232 | MR | Zbl