Eigenfunctions of the Hartree--Fock equation that are not spherically symmetric
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 263-269

Voir la notice de l'article provenant de la source Math-Net.Ru

For Hartree–Fock operator with a small parameter multiplying the nonlinear term, perturbation theory is used to prove the existence of states that do not possess spherical symmetry and depend smoothly on the parameter. Five branches of eigenvalues are found that emerge from an unperturbed point of the spectrum with multiplicity equal to four.
@article{TMF_1982_52_2_a10,
     author = {M. V. Karasev and Yu. V. Osipov},
     title = {Eigenfunctions of the {Hartree--Fock} equation that are not spherically symmetric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--269},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a10/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - Yu. V. Osipov
TI  - Eigenfunctions of the Hartree--Fock equation that are not spherically symmetric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 263
EP  - 269
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a10/
LA  - ru
ID  - TMF_1982_52_2_a10
ER  - 
%0 Journal Article
%A M. V. Karasev
%A Yu. V. Osipov
%T Eigenfunctions of the Hartree--Fock equation that are not spherically symmetric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 263-269
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a10/
%G ru
%F TMF_1982_52_2_a10
M. V. Karasev; Yu. V. Osipov. Eigenfunctions of the Hartree--Fock equation that are not spherically symmetric. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 263-269. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a10/