Eigenfunctions of the Hartree--Fock equation that are not spherically symmetric
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 263-269
Voir la notice de l'article provenant de la source Math-Net.Ru
For Hartree–Fock operator with a small parameter multiplying the nonlinear term,
perturbation theory is used to prove the existence of states that do not possess
spherical symmetry and depend smoothly on the parameter. Five branches of eigenvalues are found that emerge from an unperturbed point of the spectrum with
multiplicity equal to four.
@article{TMF_1982_52_2_a10,
author = {M. V. Karasev and Yu. V. Osipov},
title = {Eigenfunctions of the {Hartree--Fock} equation that are not spherically symmetric},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {263--269},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a10/}
}
TY - JOUR AU - M. V. Karasev AU - Yu. V. Osipov TI - Eigenfunctions of the Hartree--Fock equation that are not spherically symmetric JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 263 EP - 269 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a10/ LA - ru ID - TMF_1982_52_2_a10 ER -
M. V. Karasev; Yu. V. Osipov. Eigenfunctions of the Hartree--Fock equation that are not spherically symmetric. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 263-269. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a10/