Analytic properties of many-particle amplitudes
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 163-176
Cet article a éte moissonné depuis la source Math-Net.Ru
In the framework of Bogolyubov axiomatics, a complete proof is given that there exists an analytic function whose various boundary values are the amplitudes of all channels of an $n$-particle process. The single-particle structure of this function is elucidated.
@article{TMF_1982_52_2_a0,
author = {B. V. Medvedev and V. P. Pavlov and M. K. Polivanov and A. D. Sukhanov},
title = {Analytic properties of many-particle amplitudes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--176},
year = {1982},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a0/}
}
TY - JOUR AU - B. V. Medvedev AU - V. P. Pavlov AU - M. K. Polivanov AU - A. D. Sukhanov TI - Analytic properties of many-particle amplitudes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 163 EP - 176 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a0/ LA - ru ID - TMF_1982_52_2_a0 ER -
B. V. Medvedev; V. P. Pavlov; M. K. Polivanov; A. D. Sukhanov. Analytic properties of many-particle amplitudes. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 163-176. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a0/
[1] Araki H., J. Math. Phys., 2 (1961), 163–177 | DOI | MR
[2] Ruelle D., Nuovo Cim., 19 (1961), 356–376 | DOI | MR | Zbl
[3] Bros J., Analytic Methods in Mathematical Physics, Gordon and Breach, N. Y., 1970 | MR
[4] Bros J., Epstein H., Glaser V., Helv. Phys. Acta, 45 (1972), 149
[5] Epstein H., Glaser V., Stora R., General properties of the $n$-point functions in local guantum field theory, CERN lecture, 1976
[6] Logunov A. A., Mestvirishvili M. A., Medvedev B. V., Pavlov V. P., Polivanov M. K., Sukhanov A. D., TMF, 33:2 (1977), 149–173 | MR
[7] Pavlov V. P., TMF, 37:2 (1978), 154–170 | MR
[8] Logunov A. A., Medvedev B. V., Muzafarov L. M., Pavlov V. P., Polivanov M. K., Sukhanov A. D., TMF, 40:2 (1979), 179–193 | MR