Hamiltonian structure of multicomponent nonlinear Schrödinger equations in difference form
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 1, pp. 89-104
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the difference analogs of the mutticomponent nonlinear Schrödnger equations solvable by the inverse scattering technique for discrete block Zakharov–Shabat system are Hamiltonian systems. Using the generally employed formulation of a linear problem, this requires the introduction of complicated nonlinear and nonlocal Poisson brackets between the elements of the potential. An equivalent formulation of the linear problem is found for which the corresponding Poisson brackets for the potentials are canonical. The entire treatment is based on the method of expansion with respect to the “squares” of solutions of the linear problem.
@article{TMF_1982_52_1_a8,
     author = {V. S. Gerdjikov and M. I. Ivanov},
     title = {Hamiltonian structure of multicomponent nonlinear {Schr\"odinger} equations in difference form},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {89--104},
     year = {1982},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a8/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - M. I. Ivanov
TI  - Hamiltonian structure of multicomponent nonlinear Schrödinger equations in difference form
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 89
EP  - 104
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a8/
LA  - ru
ID  - TMF_1982_52_1_a8
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A M. I. Ivanov
%T Hamiltonian structure of multicomponent nonlinear Schrödinger equations in difference form
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 89-104
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a8/
%G ru
%F TMF_1982_52_1_a8
V. S. Gerdjikov; M. I. Ivanov. Hamiltonian structure of multicomponent nonlinear Schrödinger equations in difference form. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 1, pp. 89-104. http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a8/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi rasseyaniya, Nauka, M., 1980 | MR

[2] Ablowitz M. J., Stud. Appl. Math., 58:1 (1978), 17–94 | DOI | MR | Zbl

[3] Faddeev L. D., Solitons, Topics in Current Physics, 17, ed. R. K. Bullough, P. Caudrey, Springer, 1980, 339–354 | DOI | MR

[4] Kulish P. P., Reiman A. G., Voprosy kvantovoi teorii polya i statisticheskoi fiziki, Zap. nauchn. seminarov Leningr. otd. Mat. in-ta AN SSSR, 77, 1978, 134–147 | MR | Zbl

[5] Mumford D., Moerbecke P., Acta Mathem., 143:1 (1979), 93–154 ; Moser J., Adv. Math., 16:2 (1975), 197–220 | DOI | MR | Zbl | DOI | Zbl

[6] Manakov S. V., ZhETF, 67:2 (1974), 543–555 | MR

[7] Ablowitz M. J., Ladik J. F., J. Math. Phys., 16:3 (1975), 598–603 ; 17:6 (1976), 1011–1018 ; Chiu S.-C., Ladik J. F., J. Math. Phys., 18:4 (1977), 690–700 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[8] Kako F., Mugibayashi N., Progr. Theor. Phys., 61:3 (1979), 776–790 | DOI | MR | Zbl

[9] Dodd R. K., J. Phys. A: Math. and Gen., 11:1 (1978), 81–92 | DOI | MR | Zbl

[10] Bruschi M., Levi D., Ragnisco O., J. Phys. A: Math. and Gen., 13:7 (1980), 2531–2533 ; Levi D., Ragnisco O., Lett. Nuovo Cim., 22:17 (1977), 691–696 | DOI | MR | Zbl | DOI

[11] Bruschi M., Manakov S. V., Ragnisco O., Levi D., J. Math. Phys., 21:12 (1980), 2749–2753 | DOI | MR | Zbl

[12] Gerdzhikov V. S., Ivanov M. I., Kulish P. P., Polnaya integriruemost raznostnykh evolyutsionnykh uravnenii, Preprint E2-80-882, OIYaI, Dubna, 1981

[13] Khabibulin I. T., DAN SSSR, 249:1 (1979), 67–70 | MR

[14] Gerdzhikov V. S., Khristov E. Kh., Bolg. fiz. zh., 7:1 (1980), 28–41 ; 2, 119–133 | MR | MR

[15] Manakov S. V., ZhETF, 65:2 (1973), 505–516

[16] Kulish P. P., Obobschennyi anzatts Bete i kvantovyi metod obratnoi zadachi, Preprint R-3-79, LOMI, L., 1979; ДАН СССР, 255:2 (1980), 323–326 | MR

[17] Makhankov V. G., Makhaldiani N. V., Pashaev O. K., Phys. Lett., 81A:2, 3 (1981), 161–164 | DOI | MR

[18] Calogero F., Degasperis A., Nuovo Cim., 39B:1 (1977), 1–54 | DOI | MR

[19] Adler M., Inventiones math., 50:2 (1979), 219–248 | MR | Zbl