Nonlinear systems with exponential interaction that are generated by Kählerian chiral models
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 1, pp. 63-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Pohlmeyer transformation relating the $O(3)$-$\sigma$-model and the sine-Gordon equation is generalized to the case of a Kählerian chiral model. The transformation leads to matrix systems of the form $B^{i}_{z\bar{z}}+C^{ij}\exp B^{j}+D^i=0$ (where $C^ij$ are not Cartan matrices with the exception of one of the two-dimensional Cartan matrices of the Kac–Moody algebra) which have solutions obtained from the original chiral model (instantons, merons, complete solutions with finite action of the $CP^{n}$ and $O(2k+1)$-models). The construction also leads to the sh-Gordon and Doddl–Bullough equations.
@article{TMF_1982_52_1_a6,
     author = {A. A. Bytsenko and M. G. Tseitlin},
     title = {Nonlinear systems with exponential interaction that are generated by {K\"ahlerian} chiral models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {63--72},
     year = {1982},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a6/}
}
TY  - JOUR
AU  - A. A. Bytsenko
AU  - M. G. Tseitlin
TI  - Nonlinear systems with exponential interaction that are generated by Kählerian chiral models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 63
EP  - 72
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a6/
LA  - ru
ID  - TMF_1982_52_1_a6
ER  - 
%0 Journal Article
%A A. A. Bytsenko
%A M. G. Tseitlin
%T Nonlinear systems with exponential interaction that are generated by Kählerian chiral models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 63-72
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a6/
%G ru
%F TMF_1982_52_1_a6
A. A. Bytsenko; M. G. Tseitlin. Nonlinear systems with exponential interaction that are generated by Kählerian chiral models. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a6/

[1] Pohlmeyer K., Commun. Math. Phys., 46:3 (1976), 207–235 ; Семенов-Тян-Шанский М. А., Фаддеев Л. Д., Вестн. ЛГУ, 13:3 (1977), 81–88 | DOI | MR | MR

[2] Eichenherr H., Pohlmeyer K., Lax pairs for certain generalizations of the sine-Gordon equation, Preprint Universität Freiburg, THEP, 79-6, 1979 | MR

[3] Golo V. L., Putko B. A., TMF, 45:1 (1980), 19–29 | MR

[4] Tseitlin M. G., Zapiski nauchnykh seminarov LOMI, 101, 1981, 194–201 | MR

[5] Perelomov A. M., Commun. Math. Phys., 63 (1978), 237–242 | DOI | MR | Zbl

[6] Din A. M., Zakrzewski W. J., Phys. Lett., 95B:3, 4 (1980), 419–422 | MR

[7] Actor A., Lett. Math. Phys., 4:3 (1980), 147–153 | DOI | MR

[8] Griffits F., King Dzh., Teoriya Nevanlinny i golomorfnye otobrazheniya algebraicheskikh mnogoobrazii, Mir, M., 1976 | MR

[9] Lesnov A. N., Saveliev M. V., Commun. Math. Phys., 74:2 (1980), 111–118 | DOI | MR

[10] Eichenherr H., Forger M., Nucl. Phys., 155B:2 (1979), 381–393 | DOI | MR

[11] Borhers H. J., Garber W. D., Commun. Math. Phys., 72:1 (1980), 77–102 | DOI | MR