Nonlinear systems with exponential interaction that are generated by K\"ahlerian chiral models
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 1, pp. 63-72
Voir la notice de l'article provenant de la source Math-Net.Ru
The Pohlmeyer transformation relating the $O(3)$-$\sigma$-model and the sine-Gordon equation is generalized to the case of a Kählerian chiral model. The transformation leads to matrix systems of the form $B^{i}_{z\bar{z}}+C^{ij}\exp B^{j}+D^i=0$ (where $C^ij$ are not
Cartan matrices with the exception of one of the two-dimensional Cartan matrices
of the Kac–Moody algebra) which have solutions obtained from the original chiral
model (instantons, merons, complete solutions with finite action of the $CP^{n}$ and $O(2k+1)$-models). The construction also leads to the sh-Gordon and Doddl–Bullough equations.
@article{TMF_1982_52_1_a6,
author = {A. A. Bytsenko and M. G. Tseitlin},
title = {Nonlinear systems with exponential interaction that are generated by {K\"ahlerian} chiral models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {63--72},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a6/}
}
TY - JOUR AU - A. A. Bytsenko AU - M. G. Tseitlin TI - Nonlinear systems with exponential interaction that are generated by K\"ahlerian chiral models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 63 EP - 72 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a6/ LA - ru ID - TMF_1982_52_1_a6 ER -
%0 Journal Article %A A. A. Bytsenko %A M. G. Tseitlin %T Nonlinear systems with exponential interaction that are generated by K\"ahlerian chiral models %J Teoretičeskaâ i matematičeskaâ fizika %D 1982 %P 63-72 %V 52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a6/ %G ru %F TMF_1982_52_1_a6
A. A. Bytsenko; M. G. Tseitlin. Nonlinear systems with exponential interaction that are generated by K\"ahlerian chiral models. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/TMF_1982_52_1_a6/