Superradiant phase transitions of Fermi and bose operators with trilinear interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 3, pp. 456-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of the interaction of a field Bose operator with $2N$ Fermi (or Bose) lattice oscillators is considered. It is shown that in the limit $N\to\infty$ an equilibrium superradiant phase transition of the system can occur in the case of a Bose lattice for arbitrarily small (in contrast to a Fermi lattice) values of the coupling constant and the reciprocal temperature. The thermodynamics of the model is investigated. The results are interpreted and compared with the ordering in a Bose lattice at finite $N$.
@article{TMF_1982_51_3_a16,
     author = {V. B. Kir'yanov and V. S. Yarunin},
     title = {Superradiant phase transitions of {Fermi} and bose operators with trilinear interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {456--464},
     year = {1982},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a16/}
}
TY  - JOUR
AU  - V. B. Kir'yanov
AU  - V. S. Yarunin
TI  - Superradiant phase transitions of Fermi and bose operators with trilinear interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 456
EP  - 464
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a16/
LA  - ru
ID  - TMF_1982_51_3_a16
ER  - 
%0 Journal Article
%A V. B. Kir'yanov
%A V. S. Yarunin
%T Superradiant phase transitions of Fermi and bose operators with trilinear interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 456-464
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a16/
%G ru
%F TMF_1982_51_3_a16
V. B. Kir'yanov; V. S. Yarunin. Superradiant phase transitions of Fermi and bose operators with trilinear interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 3, pp. 456-464. http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a16/

[1] Andreev A. V., Emelyanov V. I., Ilinskii Yu. A., UFN, 131:4 (1980), 653–694 | DOI

[2] Kiryanov V. B., Yarunin V. S., TMF, 43:1 (1980), 91–99 | MR

[3] Fedotov S. A., Zap. nauchn. sem. LOMI, 101 (1981), 184–195 | MR

[4] Kimura M., Sci. Repts Kanazawa Univ., 25:1 (1980), 15–22 | MR

[5] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[6] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976

[7] Gravin V. O., Yarunin V. S., Vestn. LGU, 1980, no. 3, 19–23 | MR

[8] Compagno G., Panzarella A., Persico F., Phys. Lett., 80A:2, 3, 125–128 | MR

[9] Klimontovich Yu. L., Kineticheskaya teoriya elektromagnitnykh protsessov, Nauka, M., 1980

[10] Moschinskii B. V., Fedyanin V. K., TMF, 32:1 (1977), 96–102 | MR

[11] Klemm A., Zagrebnov Y. A., Physica, 92A (1978), 599–615 | DOI | MR

[12] Lizin I. M., Makhviladze T. M., Shelepin L. A., Trudy FIAN, 87 (1976), 21–37

[13] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR