Magnetoelastic soliton excitation in a~quasi-one-dimensional antiferromagnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 3, pp. 450-455
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that in a linear antiferromagnetic chain of spins that interact with lattice vibrations there is an excitation corresponding to a soliton solution of the nonlinear equation for the amplitude of the spin deviations at the sites. In contrast to a ferromagnetic chain, in which the nonlinear Schrödinger equation is obtained for the amplitude, in the antiferromagnetic case there is a nonlinear wave equation. However, the soliton solutions of the two equations are similar, though the expressions for the basic soliton parameters – width, amplitude, and precession frequency – are different, this being due to the fact that the spin wave dispersion laws in the two cases are different. Anisotropy plays an important part. A soliton solution is obtained for easyaxis anisotropy.
@article{TMF_1982_51_3_a15,
author = {Yu. A. Izyumov and V. M. Laptev},
title = {Magnetoelastic soliton excitation in a~quasi-one-dimensional antiferromagnet},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {450--455},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/}
}
TY - JOUR AU - Yu. A. Izyumov AU - V. M. Laptev TI - Magnetoelastic soliton excitation in a~quasi-one-dimensional antiferromagnet JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 450 EP - 455 VL - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/ LA - ru ID - TMF_1982_51_3_a15 ER -
Yu. A. Izyumov; V. M. Laptev. Magnetoelastic soliton excitation in a~quasi-one-dimensional antiferromagnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 3, pp. 450-455. http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/