Magnetoelastic soliton excitation in a quasi-one-dimensional antiferromagnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 3, pp. 450-455
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that in a linear antiferromagnetic chain of spins that interact with lattice vibrations there is an excitation corresponding to a soliton solution of the nonlinear equation for the amplitude of the spin deviations at the sites. In contrast to a ferromagnetic chain, in which the nonlinear Schrödinger equation is obtained for the amplitude, in the antiferromagnetic case there is a nonlinear wave equation. However, the soliton solutions of the two equations are similar, though the expressions for the basic soliton parameters – width, amplitude, and precession frequency – are different, this being due to the fact that the spin wave dispersion laws in the two cases are different. Anisotropy plays an important part. A soliton solution is obtained for easyaxis anisotropy.
@article{TMF_1982_51_3_a15,
author = {Yu. A. Izyumov and V. M. Laptev},
title = {Magnetoelastic soliton excitation in a~quasi-one-dimensional antiferromagnet},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {450--455},
year = {1982},
volume = {51},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/}
}
TY - JOUR AU - Yu. A. Izyumov AU - V. M. Laptev TI - Magnetoelastic soliton excitation in a quasi-one-dimensional antiferromagnet JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 450 EP - 455 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/ LA - ru ID - TMF_1982_51_3_a15 ER -
Yu. A. Izyumov; V. M. Laptev. Magnetoelastic soliton excitation in a quasi-one-dimensional antiferromagnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 3, pp. 450-455. http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/
[1] Yatsishin V. P., TMF, 32:1 (1977), 127–130
[2] Pushkarov D. I., Pushkarov Kh. I., Phys. Stat. Sol. (b), 81:2 (1977), 703–708 | DOI
[3] Lindner U., Fedyanin V. K., Phys. Stat. Sol. (b), 89:1 (1978), 123–130 | DOI | MR
[4] Leung K. M., Hone D. W., Mills D. L., Risenborough P. S., Trullinger S. E., Phys. Rev., B21:9 (1980), 4017–4026 | DOI
[5] Kjems J. K., Steiner M., Phys. Rev. Lett., 41:16 (1978), 1137–1140 | DOI
[6] Steiner M., Villain J., Windsor C. G., Adv. Phys., 25:2 (1976), 87–209 | DOI
[7] Akhiezer A. I., Baryakhtar V. G., Peletminskii S. V., Spinovye volny, Nauka, M., 1967 | MR
[8] Buzdin A. I., Bulaevskii L. N., UFN, 131:3 (1980), 495–510 | DOI
[9] Davydov A. S., Kislukha N. I., ZhETF, 71:9 (1976), 1090–1098