Magnetoelastic soliton excitation in a quasi-one-dimensional antiferromagnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 3, pp. 450-455 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that in a linear antiferromagnetic chain of spins that interact with lattice vibrations there is an excitation corresponding to a soliton solution of the nonlinear equation for the amplitude of the spin deviations at the sites. In contrast to a ferromagnetic chain, in which the nonlinear Schrödinger equation is obtained for the amplitude, in the antiferromagnetic case there is a nonlinear wave equation. However, the soliton solutions of the two equations are similar, though the expressions for the basic soliton parameters – width, amplitude, and precession frequency – are different, this being due to the fact that the spin wave dispersion laws in the two cases are different. Anisotropy plays an important part. A soliton solution is obtained for easyaxis anisotropy.
@article{TMF_1982_51_3_a15,
     author = {Yu. A. Izyumov and V. M. Laptev},
     title = {Magnetoelastic soliton excitation in a~quasi-one-dimensional antiferromagnet},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {450--455},
     year = {1982},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/}
}
TY  - JOUR
AU  - Yu. A. Izyumov
AU  - V. M. Laptev
TI  - Magnetoelastic soliton excitation in a quasi-one-dimensional antiferromagnet
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 450
EP  - 455
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/
LA  - ru
ID  - TMF_1982_51_3_a15
ER  - 
%0 Journal Article
%A Yu. A. Izyumov
%A V. M. Laptev
%T Magnetoelastic soliton excitation in a quasi-one-dimensional antiferromagnet
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 450-455
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/
%G ru
%F TMF_1982_51_3_a15
Yu. A. Izyumov; V. M. Laptev. Magnetoelastic soliton excitation in a quasi-one-dimensional antiferromagnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 3, pp. 450-455. http://geodesic.mathdoc.fr/item/TMF_1982_51_3_a15/

[1] Yatsishin V. P., TMF, 32:1 (1977), 127–130

[2] Pushkarov D. I., Pushkarov Kh. I., Phys. Stat. Sol. (b), 81:2 (1977), 703–708 | DOI

[3] Lindner U., Fedyanin V. K., Phys. Stat. Sol. (b), 89:1 (1978), 123–130 | DOI | MR

[4] Leung K. M., Hone D. W., Mills D. L., Risenborough P. S., Trullinger S. E., Phys. Rev., B21:9 (1980), 4017–4026 | DOI

[5] Kjems J. K., Steiner M., Phys. Rev. Lett., 41:16 (1978), 1137–1140 | DOI

[6] Steiner M., Villain J., Windsor C. G., Adv. Phys., 25:2 (1976), 87–209 | DOI

[7] Akhiezer A. I., Baryakhtar V. G., Peletminskii S. V., Spinovye volny, Nauka, M., 1967 | MR

[8] Buzdin A. I., Bulaevskii L. N., UFN, 131:3 (1980), 495–510 | DOI

[9] Davydov A. S., Kislukha N. I., ZhETF, 71:9 (1976), 1090–1098