Kinetic description of collective oscillations in a system of parametric spin waves. I. Kinetic equations. Homogeneous collective modes
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 234-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonequilibrium statistical operator method is used to obtain a system of kinetic equations describing the dynamics of parametric spin waves in an arbitrary inhomogeneous case. The spectrum of homogeneous collective oscillations of a packet of parametric waves around isotropic and anisotropic stationary states is found from these equations. Criteria of stability for individual modes of the collective oscillations are obtained.
@article{TMF_1982_51_2_a9,
     author = {V. G. Morozov and A. N. Mukhai},
     title = {Kinetic description of collective oscillations in a~system of parametric spin waves. {I.~Kinetic} equations. {Homogeneous} collective modes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--246},
     year = {1982},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a9/}
}
TY  - JOUR
AU  - V. G. Morozov
AU  - A. N. Mukhai
TI  - Kinetic description of collective oscillations in a system of parametric spin waves. I. Kinetic equations. Homogeneous collective modes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 234
EP  - 246
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a9/
LA  - ru
ID  - TMF_1982_51_2_a9
ER  - 
%0 Journal Article
%A V. G. Morozov
%A A. N. Mukhai
%T Kinetic description of collective oscillations in a system of parametric spin waves. I. Kinetic equations. Homogeneous collective modes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 234-246
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a9/
%G ru
%F TMF_1982_51_2_a9
V. G. Morozov; A. N. Mukhai. Kinetic description of collective oscillations in a system of parametric spin waves. I. Kinetic equations. Homogeneous collective modes. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 234-246. http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a9/

[1] Zakharov V. E., Lvov V. S., UFN, 114:4 (1974), 609–654 | DOI

[2] Myuller K. Kh., TMF, 5:3 (1970), 453–459

[3] Cid B. de Araujo, Phys. Rev., B10:9 (1974), 3961–3968 | MR

[4] Vinikovetskii I. A., Frishman A. M., Tsukernik V. M., ZhETF, 76:6 (1979), 2110–2125

[5] Lvov V. S., Musher S. L., Starobinets S. S., ZhETF, 64:3 (1973), 1074–1085

[6] Lvov V. S., Ustoichivost osnovnogo sostoyaniya i kollektivnye kolebaniya sistemy parametricheski vozbuzhdennykh spinovykh voln, Preprint IYaF8-73, IYaF, Novosibirsk, 1973

[7] Zakharov V. E., Lvov V. S., FTT, 14:10 (1972), 2913–2923

[8] Zakharov V. E., Lvov V. S., Teoriya odnochastotnoi turbulentnosti parametricheski vozbuzhdennykh voln, Preprint IYaF7-73, IYaF, Novosibirsk, 1973

[9] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[10] Akhiezer A. I., Baryakhtar V. G., Peletminskii S. V., Spinovye volny, Nauka, M., 1967 | MR

[11] Bakai A. S., ZhETF, 74:3 (1978), 993–1004

[12] Lvov V. S., Cherepanov V. B., ZhETF, 76:6 (1979), 2266–2278

[13] Bakai A. S., Krutsenko I. V., Melkov G. A., Sergeeva G. G., ZhETF, 76:1 (1979), 231–237