Radial quasipotential equation for a fermion and antifermion and infinitely rising central potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 201-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Radial equations for a system consisting of a fermion and an antifermion are derived in the quasipotential approach, and the asymptotic behavior of the radial wave functions in the limit $r\to\infty$ for infinitely rising central quasipotentials is investigated. The analogy with the Dirac equation in an external field is studied and it is shown that a confinement type solution is realized only in the presence of a scalar potential. A picture closest to that of the Schrödinger equation is realized if the quasipotential is an equal mixture of a scalar and the fourth component of a vector. The behavior near pole singularities is also investigated.
@article{TMF_1982_51_2_a5,
     author = {A. A. Khelashvili},
     title = {Radial quasipotential equation for a~fermion and antifermion and infinitely rising central potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {201--210},
     year = {1982},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a5/}
}
TY  - JOUR
AU  - A. A. Khelashvili
TI  - Radial quasipotential equation for a fermion and antifermion and infinitely rising central potentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 201
EP  - 210
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a5/
LA  - ru
ID  - TMF_1982_51_2_a5
ER  - 
%0 Journal Article
%A A. A. Khelashvili
%T Radial quasipotential equation for a fermion and antifermion and infinitely rising central potentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 201-210
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a5/
%G ru
%F TMF_1982_51_2_a5
A. A. Khelashvili. Radial quasipotential equation for a fermion and antifermion and infinitely rising central potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a5/

[1] Rein D. W., Nuovo Cim., 38A (1977), 19 | DOI

[2] Magyary E., Phys. Lett., 95B (1980), 295 | DOI

[3] Kaburaki M. et al., Spectroscopy of atomic mesons $Q\overline{q}$ in the Dirac equation with logarithmic potential, Preprint KOBE-80-20, 1980

[4] Bogolyubov P. N., EChAYa, 3:1 (1972), 144 | MR

[5] Logunov A. A., Tavkhelidze A. N., Nuovo Cim., 29 (1963), 380 | DOI | MR

[6] Salpeter E., Phys. Rev., 87 (1952), 328 | DOI | Zbl

[7] Faustov R. N., “Kvazipotentsialnyi metod v zadache o svyazannom sostoyanii dvukh chastits”, lektsiya, Mezhdunarodnaya zimnyaya shkola teoreticheskoi fiziki pri OIYaI, t. 2, OIYaI, Dubna, 1964, 108

[8] Królikowski W. et al., Klein paradox in the Breit equation, Preprint No 453, Wroclaw, 1978

[9] Jackson J. D., New particle spectroscopy, Preprint TH-2351-CERN, CERN, Geneva, 1977

[10] Matveev V. A., Muradjan R. M., Tavkhelidze A. N., Quasipotential equation for two spin $-1/2$ particles, Preprint E2-3498, JINR, Dubna, 1967

[11] Khelashvili A. A., Kvazipotentsialnoe uravnenie dlya sistemy dvukh chastits so spinom $1/2$, Soobschenie R2-4327, OIYaI, Dubna, 1969

[12] Margvelashvili M. V., Khelashvili A. A., Tr. TGU, 196 (1978), 47

[13] Günter M., J. Math. Phys., 5 (1964), 188 | DOI

[14] Królikowski W., Rzewuski J., Acta Phys. Polon., B7 (1976), 487

[15] Eichten E. et al., Phys. Rev. Lett., 34 (1975), 369 | DOI

[16] Quigg C., Rosner J. L., Phys. Lett., 71B (1977), 153 | DOI

[17] Khelashvili A. A., Soobscheniya AN GSSR, 92 (1978), 321 | MR | Zbl

[18] Akhiezer A. I., Berestetskii V. B., Kvantovaya elektrodinamika, Nauka, M., 1968, 131 | MR

[19] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., 1963 | MR