Three-body problems with $\delta$-functional potentials
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 181-191
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Possible realizations of three-particle singular Hamiltonians corresponding to $\delta$-functional two-body potentials are described. The scheme used to describe the singular potentials is essentially the same as Shirokov's [1, 2]. It is shown that besides the classical model [3, 4] it is possible to have other sensible realizations which go beyond the space of square integrable functions but still have a semibounded Hamiltonian.
			
            
            
            
          
        
      @article{TMF_1982_51_2_a3,
     author = {Yu. G. Shondin},
     title = {Three-body problems with $\delta$-functional potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {181--191},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a3/}
}
                      
                      
                    Yu. G. Shondin. Three-body problems with $\delta$-functional potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 181-191. http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a3/
