Spontaneous compactification of subspaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 171-177
Cet article a éte moissonné depuis la source Math-Net.Ru
A new mechanism of spontaneous compactification of subspaces in the case of interaction of Einstein fields with gauge fields is considered. The mechanism is based on the requirement of parallelizability of the gauge field intensities with respect to the Riemannian and gauge connections.
@article{TMF_1982_51_2_a1,
author = {D. V. Volkov and V. I. Tkach},
title = {Spontaneous compactification of subspaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {171--177},
year = {1982},
volume = {51},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a1/}
}
D. V. Volkov; V. I. Tkach. Spontaneous compactification of subspaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 171-177. http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a1/
[1] Kaluza T., Sitzber. Preuss. Akad. Wiss. Berlin, math.-phys. K, 1 (1921), 966
[2] Kerner R., Ann. Inst. H. Poincare, 9 (1968), 143 | MR
[3] Cho Y. M., Freund P. G. O., Phys. Rev., D12 (1975), 1711
[4] Cremmer E., Scherk J., Nucl. Phys., B103 (1976), 399 | DOI | MR
[5] Gliazzi F., Scherk J., Olive D., Nucl. Phys., B122 (1977), 253 | DOI
[6] Cremmer E., Scherk J., Nucl. Phys., B118 (1977), 61 | DOI | MR
[7] Cremmer E., Julia B., Nucl. Phys., B159 (1977), 141 | MR
[8] Luciani J. F., Nucl. Phys., B135 (1978), 111 | DOI | MR
[9] Kartan E., Geometriya grupp Li i simmetricheskie prostranstva, IL, M., 1949
[10] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964, 534 pp. | Zbl