Approximate renormalization group transformation in the theory of phase transitions
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 1, pp. 102-110
Voir la notice de l'article provenant de la source Math-Net.Ru
The approximate renormalization group differential equation obtained earlier in a nonperturbative approach is linearized in the neighborhood of a fixed point. The explicit form is found for the system of equations for the fixed points of the renormalization group and the linear operator of the renormalization group whose spectrum determines the critical exponent. These expressions are representated in the form of expansions with respect to irreducible mean values of the field variables ($P$-expansions) calculated with respect to the distribution with complete
free energy functional. The "$\varphi^4$" model is investigated.
@article{TMF_1982_51_1_a8,
author = {I. A. Vakarchuk and Yu. K. Rudavskii},
title = {Approximate renormalization group transformation in the theory of phase transitions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {102--110},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a8/}
}
TY - JOUR AU - I. A. Vakarchuk AU - Yu. K. Rudavskii TI - Approximate renormalization group transformation in the theory of phase transitions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 102 EP - 110 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a8/ LA - ru ID - TMF_1982_51_1_a8 ER -
%0 Journal Article %A I. A. Vakarchuk %A Yu. K. Rudavskii %T Approximate renormalization group transformation in the theory of phase transitions %J Teoretičeskaâ i matematičeskaâ fizika %D 1982 %P 102-110 %V 51 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a8/ %G ru %F TMF_1982_51_1_a8
I. A. Vakarchuk; Yu. K. Rudavskii. Approximate renormalization group transformation in the theory of phase transitions. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 1, pp. 102-110. http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a8/