Hierarchical models of spin glasses
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 1, pp. 153-159
Cet article a éte moissonné depuis la source Math-Net.Ru
Asymptotic hierarchical Dyson models defined by random Hamiltoniaas are considered. They can be regarded as hierarchical models of spin glasses. An interval of temperatures is found in which the probability distribution for the normalized mean spin converges weakly to a Ganssian distribution. It is also shown that for some hierarchical models of a spin glass the limiting free energy is infinite with positive probability when the coupling constant satisfies $c>2$.
@article{TMF_1982_51_1_a14,
author = {A. Naimzhanov},
title = {Hierarchical models of spin glasses},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {153--159},
year = {1982},
volume = {51},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a14/}
}
A. Naimzhanov. Hierarchical models of spin glasses. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 1, pp. 153-159. http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a14/
[1] Dyson P. J., Commun. Math. Phys., 12:2 (1969), 91–107 | DOI | MR | Zbl
[2] Bleher P. M., Sinai Ja. G., Commun. Math. Phys., 33:1 (1973), 23–42 | DOI | MR
[3] Sinai Ya. G., Teoriya fazovykh perekhodov, Nauka, M., 1980, 208 pp. | MR
[4] Blekher P. M., Tr. Mosk. matem. ob-va, 33 (1975), 155–222
[5] Khanin K. M., Sinai Ja. G., J. Math. Phys., 20:6 (1979), 573–584 | MR
[6] Klein M. W., Brout R., Phys. Rev., 132:6 (1963), 2412–2426 | DOI
[7] Edwards S. F., Anderson P. W., J. Phys., F5:5 (1975), 965–974 | DOI
[8] Pastur L. A., Figotin A. L., TMF, 35:2 (1978), 193–210 | MR
[9] Naimzhanov A., Usp. matem. nauk, 36:1 (1981), 219–220 | MR | Zbl