Divergence of Burnett coefficients in three-dimensional hydrodynamics of hard spheres
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 1, pp. 142-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The second approximation of the generalized Chapman–Enskog method is considered for the nonlinear kinetic equations of the hard sphere model. It is shown that formal application of the method leads, as in the linearized case, to divergences for a definite class of Burnett coefficients.
@article{TMF_1982_51_1_a12,
     author = {N. G. Inozemtseva and B. I. Sadovnikov},
     title = {Divergence of {Burnett} coefficients in three-dimensional hydrodynamics of hard spheres},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {142--149},
     year = {1982},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a12/}
}
TY  - JOUR
AU  - N. G. Inozemtseva
AU  - B. I. Sadovnikov
TI  - Divergence of Burnett coefficients in three-dimensional hydrodynamics of hard spheres
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 142
EP  - 149
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a12/
LA  - ru
ID  - TMF_1982_51_1_a12
ER  - 
%0 Journal Article
%A N. G. Inozemtseva
%A B. I. Sadovnikov
%T Divergence of Burnett coefficients in three-dimensional hydrodynamics of hard spheres
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 142-149
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a12/
%G ru
%F TMF_1982_51_1_a12
N. G. Inozemtseva; B. I. Sadovnikov. Divergence of Burnett coefficients in three-dimensional hydrodynamics of hard spheres. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 1, pp. 142-149. http://geodesic.mathdoc.fr/item/TMF_1982_51_1_a12/

[1] Ulenbek Dzh., Ford Dzh., Lektsii po statisticheskoi mekhanike, Mir, M., 1965

[2] Inozemtseva N. G., Sadovnikov B. I., Raskhodimost koeffitsientov Barnetta v trekhmernoi gidrodinamike tverdykh sfer. I: Lineinoe priblizhenie, Preprint R1781-9, OIYaI, Dubna, 1981 | MR

[3] Ernst M. H., Dorfman J. K., Physica, 61 (1972), 157–181 | DOI | MR

[4] Bogolyubov N. N., EChAYa, 9:4 (1978), 501–579 | MR

[5] Inozemtseva N. G., Sadovnikov B. I., DAN SSSR, 252:4 (1980), 852–855 | MR