Quasiclassical trajectory-coherent states of a~nonrelativistic particle in an~arbitrary electromagnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 390-396
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that for a nonrelativistic charged particle moving in an arbitrary external electromagnetic field there exist approximate solutions of the Schrödinger equation such that the mean quantum-mechanical coordinates and momenta of these states are enact general solutions of the classical Hamilton equations. Such states are called trajectory-coherent states. The wave functions of trajectory-coherent states are obtained by Maslov's complex germ method. The simplest properties of these states are studied.
@article{TMF_1982_50_3_a7,
author = {V. G. Bagrov and V. V. Belov and I. M. Ternov},
title = {Quasiclassical trajectory-coherent states of a~nonrelativistic particle in an~arbitrary electromagnetic field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {390--396},
publisher = {mathdoc},
volume = {50},
number = {3},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a7/}
}
TY - JOUR AU - V. G. Bagrov AU - V. V. Belov AU - I. M. Ternov TI - Quasiclassical trajectory-coherent states of a~nonrelativistic particle in an~arbitrary electromagnetic field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 390 EP - 396 VL - 50 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a7/ LA - ru ID - TMF_1982_50_3_a7 ER -
%0 Journal Article %A V. G. Bagrov %A V. V. Belov %A I. M. Ternov %T Quasiclassical trajectory-coherent states of a~nonrelativistic particle in an~arbitrary electromagnetic field %J Teoretičeskaâ i matematičeskaâ fizika %D 1982 %P 390-396 %V 50 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a7/ %G ru %F TMF_1982_50_3_a7
V. G. Bagrov; V. V. Belov; I. M. Ternov. Quasiclassical trajectory-coherent states of a~nonrelativistic particle in an~arbitrary electromagnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 390-396. http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a7/