Quasiclassical trajectory-coherent states of a nonrelativistic particle in an arbitrary electromagnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 390-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that for a nonrelativistic charged particle moving in an arbitrary external electromagnetic field there exist approximate solutions of the Schrödinger equation such that the mean quantum-mechanical coordinates and momenta of these states are enact general solutions of the classical Hamilton equations. Such states are called trajectory-coherent states. The wave functions of trajectory-coherent states are obtained by Maslov's complex germ method. The simplest properties of these states are studied.
@article{TMF_1982_50_3_a7,
     author = {V. G. Bagrov and V. V. Belov and I. M. Ternov},
     title = {Quasiclassical trajectory-coherent states of a~nonrelativistic particle in an~arbitrary electromagnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {390--396},
     year = {1982},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a7/}
}
TY  - JOUR
AU  - V. G. Bagrov
AU  - V. V. Belov
AU  - I. M. Ternov
TI  - Quasiclassical trajectory-coherent states of a nonrelativistic particle in an arbitrary electromagnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 390
EP  - 396
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a7/
LA  - ru
ID  - TMF_1982_50_3_a7
ER  - 
%0 Journal Article
%A V. G. Bagrov
%A V. V. Belov
%A I. M. Ternov
%T Quasiclassical trajectory-coherent states of a nonrelativistic particle in an arbitrary electromagnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 390-396
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a7/
%G ru
%F TMF_1982_50_3_a7
V. G. Bagrov; V. V. Belov; I. M. Ternov. Quasiclassical trajectory-coherent states of a nonrelativistic particle in an arbitrary electromagnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 390-396. http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a7/

[1] Schrödinger E., Naturwissenschaft, 14 (1926), 664 | DOI | Zbl

[2] Glauber R. J., Phys. Rev., 130 (1963), 2529–2539 ; 131, 2766–2788 | DOI | MR | DOI | MR

[3] Schwinger J., Phys. Rev., 91 (1953), 728–743 | DOI | MR

[4] Rashevskii P. K., UMN, 13 (1958), 3–110 | MR | Zbl

[5] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979, 320 pp. | MR

[6] Kvantovaya elektrodinamika s vneshnim polem, Sb. statei, Izd. Tomskogo universiteta, Tomsk, 1977, 87 pp.

[7] Maslov V. P., Operatornye metody, Nauka, M., 1973, 544 pp. | MR

[8] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977, 384 pp. | MR

[9] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972, 456 pp. | MR

[10] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976, 296 pp. | MR

[11] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 718 pp. | MR

[12] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974, 752 pp. | MR