Nontrivial solutions of the Ginzburg–Landau equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 383-389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The number of solutions of the Ginzburg–Landau equation is estimated by topological methods. It is shown in particular that under certain conditions, the number of inequivalent solutions of this equation tends to infinity as $\lambda\to\infty$.
@article{TMF_1982_50_3_a6,
     author = {V. S. Klimov},
     title = {Nontrivial solutions of the {Ginzburg{\textendash}Landau} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {383--389},
     year = {1982},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a6/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Nontrivial solutions of the Ginzburg–Landau equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 383
EP  - 389
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a6/
LA  - ru
ID  - TMF_1982_50_3_a6
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Nontrivial solutions of the Ginzburg–Landau equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 383-389
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a6/
%G ru
%F TMF_1982_50_3_a6
V. S. Klimov. Nontrivial solutions of the Ginzburg–Landau equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 383-389. http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a6/

[1] Landau L. D., Sobranie trudov, t. 2, Nauka, M., 1969 | MR

[2] Lifshits E. M., Pitaevskii L. P., Statisticheskaya fizika, ch. 2, Nauka, M., 1978 | MR

[3] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[5] Bykhovskii E. B., Smirnov N. V., “Ob ortogonalnykh razlozheniyakh prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti”, Tr. MIAN SSSR, 59, 1960, 5–36 | MR | Zbl

[6] Clark D. C., Indiana Univ. Math. J., 22 (1972), 65–74 | DOI | MR | Zbl

[7] Krasnoselskii M. A., UMN, 7:2 (1952), 157–164 | MR

[8] Shvarts A. S., UMN, 12:4 (1957), 209–214 | MR | Zbl

[9] Palais R. S., Topology, 5:2 (1966), 115–132 | DOI | MR | Zbl

[10] Odekh F., “Zadacha o bifurkatsii v teorii sverkhprovodimosti”, Teoriya vetvleniya i nelineinye zadachi na sobstvennye znacheniya, Mir, M., 1974, 63–70