Integration of functions in a space with complex number of dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 370-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of analytic continuation with respect to the dimension of integrals of isotropic functions, $I(\nu)=\int f(x_1,\dots,x_n)d^\nu x_1\dots d^\nu x_n$, i.e., of functions such that $f(Ux_1,\dots,Ux_n)=f(x_1,\dots,x_n)$ for any orthogonal transformation $U\in O(\nu)$. The main result of the paper is the proof that if $f$ is a $C^\infty$ rapidly decreasing function, $f \in \mathscr S$, then $I(\nu)$ is an entire function of $\nu$. Its order is estimated as a generalized function over the space for $\mathscr S$ different complex values of $\nu$. A uniqueness theorem for the analytic continuation of $I(\nu)$ is established. Similar results are proved for an operator of integration with respect to some of the variables. The analytic continuation with respect to the dimension of the operator of Fourier transformation is considered.
@article{TMF_1982_50_3_a5,
     author = {P. M. Bleher},
     title = {Integration of functions in a space with complex number of dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {370--382},
     year = {1982},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a5/}
}
TY  - JOUR
AU  - P. M. Bleher
TI  - Integration of functions in a space with complex number of dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 370
EP  - 382
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a5/
LA  - ru
ID  - TMF_1982_50_3_a5
ER  - 
%0 Journal Article
%A P. M. Bleher
%T Integration of functions in a space with complex number of dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 370-382
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a5/
%G ru
%F TMF_1982_50_3_a5
P. M. Bleher. Integration of functions in a space with complex number of dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 370-382. http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a5/

[1] t'Hooft G., Veltman M., Nucl. Phys., B44 (1972), 189–201 | DOI | MR

[2] Bollini C. G., Giambiagi J. J., Phys. Lett., B40 (1972), 566–570 | DOI

[3] Speer E., J. Math. Phys., 15 (1974), 1–6 | DOI | MR

[4] DeVega H., Schaposnik F., J. Math. Phys., 15 (1974), 1998–2000 | DOI

[5] Speer E., Renormalization theory, eds. Velo G., Wightman A. S., Publ. Comp. D. Riedel, Dordrecht-Holland, 1976, 25–93 | DOI | MR

[6] Breitenlohner P., Maison D., Commun. Math. Phys., 52:1 (1977), 11–38 | DOI | MR

[7] Zavyalov O. I., Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR

[8] Wilson K. G., Kogut J., Phys. Rep., 12C:2 (1974), 75–199 | DOI

[9] Ma S.-K., Rev. Mod. Phys., 45:4 (1973), 589 | DOI | MR

[10] Bleher P. M., Missarov M. D., Commun. Math. Phys., 74 (1980), 235–254 ; 255–272 | DOI | MR | MR

[11] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[12] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947

[13] Schwarz G. W., Topology, 14:1 (1975), 63–68 | DOI | MR | Zbl

[14] Luna D., Ann. Inst. Fourier, 26:1 (1976), 33–49 | DOI | MR | Zbl

[15] Titchmarsh E., Teoriya funktsii, GITTL, M.–L., 1951 | MR

[16] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[17] Gelfand I. M., Shilov G. E., Obobschennye funktsii, t. 2. Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1961 | MR