Gauge invariance in the theory of antisymmetric tensor fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 350-359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical and quantum theories of exterior differential forms are considered. It is shown that in the massless case they are generalized gauge fields and on quantization require the introduction of a set of additional ghosts. The possibility of describing the influence of the space-time topology on physical phenomena is discussed.
@article{TMF_1982_50_3_a3,
     author = {Yu. N. Obukhov},
     title = {Gauge invariance in the~theory of antisymmetric tensor fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--359},
     year = {1982},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a3/}
}
TY  - JOUR
AU  - Yu. N. Obukhov
TI  - Gauge invariance in the theory of antisymmetric tensor fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 350
EP  - 359
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a3/
LA  - ru
ID  - TMF_1982_50_3_a3
ER  - 
%0 Journal Article
%A Yu. N. Obukhov
%T Gauge invariance in the theory of antisymmetric tensor fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 350-359
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a3/
%G ru
%F TMF_1982_50_3_a3
Yu. N. Obukhov. Gauge invariance in the theory of antisymmetric tensor fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 350-359. http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a3/

[1] Kalb M., Ramond P., Phys. Rev., D9:8 (1974), 2273–2284 ; Cremmer E., Scherk J., Nucl. Phys., B72:1 (1974), 117–124 ; Nambu Y., Phys. Rep., 23C:3 (1976), 250–253 | DOI | MR | DOI

[2] Fradkin E. S., Vasiliev M. A., Lett. Nuov. Cim., 25:3 (1979), 79–87 | DOI | MR

[3] Cremmer E., Julia B., Scherk J., Phys. Lett., B76:4 (1978), 409–412 | DOI

[4] Townsend P. K., Phys. Lett., B88:1–2 (1979), 97–101 | DOI | MR

[5] Flanders H., Differential forms, Academic Press, N. Y., 1963 | MR | Zbl

[6] Faddeev L. D., Popov V. N., Phys. Lett., B25:1 (1967), 29–30 ; Попов В. Н., Континуальные интегралы в квантовой теории поля и статистической физике, Атомиздат, М., 1976 | DOI | MR

[7] Sezgin E., Nieuwenhuizen P. van, Phys. Rev., D22:2 (1980), 301–308 | MR

[8] Siegel W., Phys. Lett., B93:1–2 (1980), 170–173 | DOI | MR

[9] Nielsen N. K., Nucl. Phys., B140:4 (1978), 499–509 | DOI

[10] Becchi C., Rouet A., Stora R., Commun. Math. Phys., 42:2 (1975), 127–162 | DOI | MR

[11] Duff M. J., Nieuwenhuizen P. van, Phys. Lett., B94:2 (1980), 179–182 | DOI

[12] Christensen S. M., Duff M. J., Nucl. Phys., B154:3 (1979), 301–342 | DOI | MR

[13] Aharonov Y., Bohm D., Phys. Rev., 115:3 (1959), 485–491 | DOI | MR | Zbl

[14] Avis S. J., Isham C. J., “Quantum field theory and fibre bundles in general spacetime”, Recent Developments in Gravitation (Gargèse 1978), eds. Lévy M., Deser S., Plenum Press, N. Y., 1979, 347–401 | DOI

[15] Townsend P. K., “Local supersymmetry without gravity?”, Supergravity, eds. Nieuwenhuizen P. van, Freedman D. Z., North-Holland, Amsterdam, 1979, 37–42 | MR

[16] Townsend P. K., Phys. Lett., B90:3 (1980), 275–276 | DOI